On amoebas of random plane curves


Kişisel A. U. Ö., Bayraktar T.

27th Gökova Geometry-Topology Conference, Muğla, Türkiye, 30 Mayıs - 04 Haziran 2022, ss.1

  • Yayın Türü: Bildiri / Özet Bildiri
  • Basıldığı Şehir: Muğla
  • Basıldığı Ülke: Türkiye
  • Sayfa Sayıları: ss.1
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Due to a theorem of Passare and Rullgard, the area of the amoeba of a degree d" role="presentation" >dd algebraic curve in the complex projective plane is bounded above by π2d2/2" role="presentation" >π2d2/2π2d2/2 and the curves attaining the bound - special Harnack curves - have been characterized by Mikhalkin. In this talk, reporting on joint work with Turgay Bayraktar, I will argue that the expected area of a randomly chosen complex algebraic curve, with respect to the Kostlan distribution, is bounded above by a constant times d" role="presentation" >dd. This result also generalizes in a natural way to half dimensional complete intersections in toric varieties with an arbitrary Newton polytope.