Copy For Citation
Kişisel A. U. Ö., Bayraktar T.
27th Gökova Geometry-Topology Conference, Muğla, Turkey, 30 May - 04 June 2022, pp.1
-
Publication Type:
Conference Paper / Summary Text
-
City:
Muğla
-
Country:
Turkey
-
Page Numbers:
pp.1
-
Middle East Technical University Affiliated:
Yes
Abstract
Due to a theorem of Passare and Rullgard, the area of the amoeba of a degree d" role="presentation" >d algebraic curve in the complex projective plane is bounded above by π2d2/2" role="presentation" >π2d2/2 and the curves attaining the bound - special Harnack curves - have been characterized by Mikhalkin. In this talk, reporting on joint work with Turgay Bayraktar, I will argue that the expected area of a randomly chosen complex algebraic curve, with respect to the Kostlan distribution, is bounded above by a constant times d" role="presentation" >d. This result also generalizes in a natural way to half dimensional complete intersections in toric varieties with an arbitrary Newton polytope.