Self-dual Yang-Mills fields in eight dimensions


Creative Commons License

Bilge A., Dereli T., Kocak S.

LETTERS IN MATHEMATICAL PHYSICS, vol.36, no.3, pp.301-309, 1996 (Peer-Reviewed Journal) identifier identifier

  • Publication Type: Article / Article
  • Volume: 36 Issue: 3
  • Publication Date: 1996
  • Doi Number: 10.1007/bf00943282
  • Journal Name: LETTERS IN MATHEMATICAL PHYSICS
  • Journal Indexes: Science Citation Index Expanded, Scopus
  • Page Numbers: pp.301-309
  • Keywords: self-duality, Yang-Mills fields, 8 DIMENSIONS, EQUATIONS, GREATER

Abstract

Strongly self-dual Yang-Mills fields in even-dimensional spaces are characterised by a set of constraints on the eigenvalues of the Yang-Mills fields F-mu nu. We derive a topological bound on R(8), integral(M)(F, F)(2) greater than or equal to k integral(M) p(1)(2), where p(1) is the first Pontryagin class of the SO(n) Yang-Mills bundle, and k is a constant. Strongly self-dual Yang-Mills fields realise the lower bound.