A review on platinum(0) nanocatalysts for hydrogen generation from the hydrolysis of ammonia borane


DALTON TRANSACTIONS, vol.50, pp.12349-12364, 2021 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Review
  • Volume: 50
  • Publication Date: 2021
  • Doi Number: 10.1039/d1dt01709h
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aquatic Science & Fisheries Abstracts (ASFA), Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, MEDLINE
  • Page Numbers: pp.12349-12364
  • Middle East Technical University Affiliated: Yes


This review reports a survey on the progress in developing highly efficient platinum nanocatalysts for the hydrolytic dehydrogenation of ammonia borane (AB). After a short prelude emphasizing the importance of increasing the atom efficiency of high cost, precious platinum nanoparticles (NPs) which are known to be one of the highest activity catalysts for hydrogen generation from the hydrolysis of AB, this article reviews all the available reports on the use of platinum-based catalysts for this hydrolysis reaction covering (i) early tested platinum catalysts, (ii) platinum(0) NPs supported on oxides, (iii) platinum(0) NPs supported on carbonaceous materials, (iv) supported platinum single-atom catalysts, (v) bimetallic- and (vi) multimetallic-platinum NP nanocatalysts, and (vii) magnetically separable platinum-based catalysts. All the reported results are tabulated along with the important parameters used in the platinum-catalyzed hydrolysis of AB. In the section "Concluding remarks and a look towards the future" a discussion is devoted to the approaches for making high cost, precious platinum catalysts as efficient as possible, ultimately lowering the cost, including the suggestions for the future research in this field.