Variable selection in linear-circular regression models


ÇAMLI O., KALAYLIOĞLU AKYILDIZ Z. I., SenGupta A.

JOURNAL OF APPLIED STATISTICS, cilt.50, sa.16, ss.3337-3361, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 50 Sayı: 16
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1080/02664763.2022.2110860
  • Dergi Adı: JOURNAL OF APPLIED STATISTICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, ABI/INFORM, Aerospace Database, Business Source Elite, Business Source Premier, CAB Abstracts, Veterinary Science Database, zbMATH
  • Sayfa Sayıları: ss.3337-3361
  • Anahtar Kelimeler: Regularization, Bayesian lasso, laplace distribution, circular regression, dimension reduction, TUNING PARAMETER SELECTION, BAYESIAN-ANALYSIS, SHRINKAGE, LASSO, DISTRIBUTIONS
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Applications of circular regression models are ubiquitous in many disciplines, particularly in meteorology, biology and geology. In circular regression models, variable selection problem continues to be a remarkable open question. In this paper, we address variable selection in linear-circular regression models where uni-variate linear dependent and a mixed set of circular and linear independent variables constitute the data set. We consider Bayesian lasso which is a popular choice for variable selection in classical linear regression models. We show that Bayesian lasso in linear-circular regression models is not able to produce robust inference as the coefficient estimates are sensitive to the choice of hyper-prior setting for the tuning parameter. To eradicate the problem, we propose a robustified Bayesian lasso that is based on an empirical Bayes (EB) type methodology to construct a hyper-prior for the tuning parameter while using Gibbs Sampling. This hyper-prior construction is computationally more feasible than the hyper-priors that are based on correlation measures. We show in a comprehensive simulation study that Bayesian lasso with EB-GS hyper-prior leads to a more robust inference. Overall, the method offers an efficient Bayesian lasso for variable selection in linear-circular regression while reducing model complexity.