Test of independence in the Farlie-Gumbel-Morgenstern distribution


Guven B.

COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, cilt.32, sa.9, ss.1753-1765, 2003 (SCI İndekslerine Giren Dergi) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 32 Konu: 9
  • Basım Tarihi: 2003
  • Doi Numarası: 10.1081/sta.120022707
  • Dergi Adı: COMMUNICATIONS IN STATISTICS-THEORY AND METHODS
  • Sayfa Sayıları: ss.1753-1765

Özet

We consider the hypotheses; H-0 : theta = 0 vs. H-1 : theta greater than or equal to eta where theta is the dependence parameter of the Farlie-Gumbel-Morgenstren distribution and eta is an element of (0, 1]. A test, which maximizes the minimum power over the alternative hypothesis, is given for these hypotheses. The power function of this test is monotone increasing over the alternative hypothesis. Furthermore, the asymptotic distribution and the approximate power of the test are presented.