Electrochemical polymerization of hexachloroethane to form poly(hydridocarbyne): a pre-ceramic polymer for diamond production


Nur Y., Cengiz H. M. , Pitcher M. W. , TOPPARE L. K.

JOURNAL OF MATERIALS SCIENCE, vol.44, no.11, pp.2774-2779, 2009 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 44 Issue: 11
  • Publication Date: 2009
  • Doi Number: 10.1007/s10853-009-3364-4
  • Title of Journal : JOURNAL OF MATERIALS SCIENCE
  • Page Numbers: pp.2774-2779

Abstract

Due to its structural similarity with diamond, poly(hydridocarbyne) (PHC), which is sp(3)-hybridized, is a unique polymer that can be easily converted to diamond and diamond-like-carbon ceramics upon heating. PHC can be easily synthesized via the electrochemical polymerization of chloroform as previously reported. Here, we report the electrosynthesis of PHC from hexachloroethane. Since hexachloroethane has six chlorine atoms in its structure, polymerization takes place through the carbons simultaneously. Thus, the polymer is bigger in chain length than PHC obtained from the polymerization of chloroform. UV-vis, FTIR, and NMR spectroscopy were utilized to determine the polymer structure. Conversion of the polymer to diamond was accomplished by heating at 1000 A degrees C under a nitrogen atmosphere as confirmed by Optical Microscopy and Raman analysis. XRD studies showed that the product is an assortment of diamond forms.