Minimizing friction, wear, and energy losses by eliminating contact charging

Creative Commons License

Sayfidinov K., Cezan S. D., Baytekin B., Baytekin H. T.

SCIENCE ADVANCES, vol.4, no.11, 2018 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 4 Issue: 11
  • Publication Date: 2018
  • Doi Number: 10.1126/sciadv.aau3808
  • Journal Name: SCIENCE ADVANCES
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Middle East Technical University Affiliated: No


One-fourth of the global energy losses result from friction and wear. Although friction and tribocharging were presented to be mutually related, reduction of friction and wear by eliminating tribocharges on common polymers, and decrease of power losses in devices with polymer parts were not shown to date. Here, we demonstrate that for common polymers, friction-which is strongly related to surface charge density-can be notably reduced by various methods of tribocharge mitigation, namely, corona discharging, solvent treatment, or placing a grounded conductor on the backside of one of the shearing materials. In our simple demonstrations, we found that by preventing tribocharge accumulation, a remarkable two-thirds of power loss during operation of simple mechanical devices with common polymers and plastic parts can be saved and wear can be reduced by a factor of 10. These demonstrations indicate important practical ramifications in mechanical systems with insulating parts.