European Physical Journal C, vol.83, no.5, 2023 (SCI-Expanded)
We provide two novel ways to compute the surface gravity (κ) and the Hawking temperature (TH) of a stationary black hole: in the first method TH is given as the three-volume integral of the Gauss–Bonnet invariant (or the Kretschmann scalar for Ricci-flat metrics) in the total region outside the event horizon; in the second method it is given as the surface integral of the Riemann tensor contracted with the covariant derivative of a Killing vector on the event horizon. To arrive at these new formulas for the black hole temperature (and the related surface gravity), we first construct a new differential geometric identity using the Bianchi identity and an antisymmetric rank-2 tensor, valid for spacetimes with at least one Killing vector field. The Gauss–Bonnet tensor and the Gauss–Bonnet scalar play a particular role in this geometric identity. We calculate the surface gravity and the Hawking temperature of the Kerr and the extremal Reissner–Nordström holes as examples.