The Effect of Apical Vertebra Position on Growing Rod Treatment: A Clinical and Finite Element Study


DURSUN G., Cetik R. M. , GÜZEL D., DEMİRKIRAN H. G. , Ramazanov R., Dede O., ...More

Journal of Pediatric Orthopaedics, vol.42, 2022 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 42
  • Publication Date: 2022
  • Doi Number: 10.1097/bpo.0000000000002135
  • Journal Name: Journal of Pediatric Orthopaedics
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, CINAHL, EMBASE, MEDLINE
  • Keywords: spine, early-onset scoliosis, growing rods, distraction, apex vertebra, finite element analysis, POSTERIOR DISTRACTION, SPINAL DEFORMITY, SCOLIOSIS, GROWTH, FUSION, INSTRUMENTATION, OUTCOMES, SURGERY
  • Middle East Technical University Affiliated: Yes

Abstract

© 2022 Lippincott Williams and Wilkins. All rights reserved.Background: Growing rods (GRs) is a commonly utilized technique for the management of early-onset scoliosis. The significance of the position of the apical vertebrae relative to the rods is not known. The purpose of this study is to analyze the potential effects of the position of the apical vertebrae in relation to the GRs on deformity control through plain radiographs and finite element analysis (FEA) modeling. Methods: We identified 140 patients treated with GR between 2000 and 2018. Patients who had a congenital vertebral anomaly or <2-year follow-up were excluded. Curve magnitude, traction radiograph under general anesthesia (TRUGA) flexibility, apical rotation, the lengths of T1-12, T1-S1, and the instrumented segments were recorded. Patients were divided into 3 groups according to the apical position on the postoperative radiographs: group 1 (both pedicles are between the rods), group 2 (convex rod is between the apical vertebra pedicles), group 3 (both pedicles are lateral to the convex rod). FEA models were created simulating the 3 groups. Both radiographic and FEA data were analyzed to compare the deformity control and growth in each group. Results: Fifty-eight patients were included in the final analyses (mean age 84 mo; range: 38 to 148). Ten patients (17%) were in group 1, 34 (59%) in group 2, and 14 (24%) in group 3. Difference between TRUGA flexibilities was statistically insignificant. Group 3 was the least successful in terms of both height gain and rotational control. FEA showed a decrease in rotation and displacement for every group, however, the residual rotation and displacement was highest in group 3. Conclusions: Bringing the apex in line with the GR increases the capacity of growth preservation as it results in largest height gain and better deformity control. FEA model demonstrated that distraction alone is inadequate for controlling rotation, and with increasing apical translation, residual rotation after distraction also increases. Level of Evidence: Level III.