On entire rational maps of real surfaces


Creative Commons License

Ozan Y.

JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, cilt.39, sa.1, ss.77-89, 2002 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 39 Sayı: 1
  • Basım Tarihi: 2002
  • Doi Numarası: 10.4134/jkms.2002.39.1.077
  • Dergi Adı: JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.77-89
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

In this paper, we define for a component X-0 of a nonsingular compact real algebraic surface X the complex genus of X-0, denoted by g(C)(X-0), and use this to prove the nonexistence of nonzero degree entire rational maps f : X-0 --> Y provided that g(C)(Y) > g(C)(X-0), analogously to the topological category. We construct connected real surfaces of arbitrary topological genus with zero complex genus.