Discretization error due to the identity operator in surface integral equations

Creative Commons License

Ergul O. , Gurel L.

COMPUTER PHYSICS COMMUNICATIONS, cilt.180, sa.10, ss.1746-1752, 2009 (SCI İndekslerine Giren Dergi) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 180 Konu: 10
  • Basım Tarihi: 2009
  • Doi Numarası: 10.1016/j.cpc.2009.04.020
  • Sayfa Sayıları: ss.1746-1752


We consider the accuracy of surface integral equations for the solution of scattering and radiation problems in electromagnetics. In numerical solutions, second-kind integral equations involving well-tested identity operators are preferable for efficiency, because they produce diagonally-dominant matrix equations that can be solved easily with iterative methods. However, the existence of the well-tested identity operators leads to inaccurate results, especially when the equations are discretized with low-order basis functions, such as the Rao-Wilton-Glisson functions. By performing a computational experiment based on the nonradiating property of the tangential incident fields on arbitrary surfaces, we show that the discretization error of the identity operator is a major error source that contaminates the accuracy of the second-kind integral equations significantly. (C) 2009 Elsevier B.V. All rights reserved.