Crystals, cilt.15, sa.11, 2025 (SCI-Expanded, Scopus)
The Nonlinear Twist Extrusion (NLTE) method, a novel severe plastic deformation (SPD) technique, aims to enhance grain refinement and achieve a more uniform plastic strain distribution. Grain size and its uniform distribution strongly influence the physical properties of metals. Therefore, predicting texture evolution during processing is essential for optimizing forming parameters and improving material performance. In this study, a rate-dependent crystal plasticity formulation is implemented in an explicit framework in Abaqus finite element software, based on a finite strain approach with multiplicative decomposition of the deformation gradient. Crystal plasticity finite element (CPFEM) simulations are conducted on single-crystal copper under boundary conditions representing the NLTE process. The influence of dynamic friction coefficients on texture evolution is systematically investigated, and the results are compared with experimental observations. The study provides new insights into deformation mechanisms during NLTE and highlights the strong correlation between texture development and forming parameters.