STUDIA MATHEMATICA, cilt.203, sa.2, ss.163-170, 2011 (SCI-Expanded)
The paper introduces a notion of quasi-compact operator net on a Banach space. It is proved that quasi-compactness of a uniform Lotz-Rabiger net (T(lambda))(lambda) is equivalent to quasi-compactness of some operator T(lambda). We prove that strong convergence of a quasi-compact uniform Lotz-Rabiger net implies uniform convergence to a finite-rank projection. Precompactness of operator nets is also investigated.