Concrete description of CD0(K)-spaces as C(X)-spaces and its applications


Creative Commons License

Ercan Z.

PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, cilt.132, sa.6, ss.1761-1763, 2004 (SCI İndekslerine Giren Dergi) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 132 Konu: 6
  • Basım Tarihi: 2004
  • Doi Numarası: 10.1090/s0002-9939-03-07235-6
  • Dergi Adı: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
  • Sayfa Sayıları: ss.1761-1763

Özet

We prove that for a compact Hausdorff space K without isolated points, CD0(K) and C(K x {0, 1}) are isometrically Riesz isomorphic spaces under a certain topology on K x {0, 1}. Moreover, K is a closed subspace of K x {0, 1}. This provides concrete examples of compact Hausdorff spaces X such that the Dedekind completion of C(X) is B(S) (= the set of all bounded real-valued functions on S) since the Dedekind completion of CD0(K) is B(K) (CD0(K, E) and CDw (K, E) spaces as Banach lattices).