Track Loss versus Computation Time Dilemma in Multitarget Ground Target Tracking Performance

Korkmaz Y., BAYKAL B.

16th International Conference on Information Fusion (FUSION), İstanbul, Turkey, 9 - 12 July 2013, pp.2168-2176 identifier

  • Publication Type: Conference Paper / Full Text
  • City: İstanbul
  • Country: Turkey
  • Page Numbers: pp.2168-2176
  • Middle East Technical University Affiliated: Yes


Tracking of multiple ground targets with airborne Ground Moving Target Indicator (GMTI) sensor measurements is a challenging problem where heavy and dense false alarms with high target density are inevitably encountered in the surveillance scenes. Hence, optimal approaches require heavy computational load where the duration of overall computation rises exponentially with the number of target tracks and measurements in observation per scan. Consequently, more practical suboptimal approaches, such as Linear Multi-Target (LM) approach, is explored due to linear number of operations in the number of target tracks with a negligible performance loss compared to optimal approaches. Although LM approach performs modestly adequate with significantly less computation duration than optimal approaches, it is highly susceptible to track loss, as in the rest of suboptimal approaches, when the targets are closely spaced and the number of targets and measurements are considerably high. Simulations are carried out in realistic test scenarios to compare single target tracking algorithms including IMM-PDA and IMM-IPDA algorithms; Optimal approaches in multitarget tracking including IMM-JPDA, IMM-IJPDA and IMM-JIPDA algorithms and an example of Linear Multi-target approaches in multitarget tracking including IMM-LMIPDA algorithm. Benchmarkings of these algorithms are done under RMSE performance, track loss and computation time evaluation results.