A biomimetic growth factor delivery strategy for enhanced regeneration of iliac crest defects


Huri P. Y., Huri G., Yasar U., UÇAR Y., DİKMEN N., Hasirci N., ...Daha Fazla

BIOMEDICAL MATERIALS, cilt.8, sa.4, 2013 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 8 Sayı: 4
  • Basım Tarihi: 2013
  • Doi Numarası: 10.1088/1748-6041/8/4/045009
  • Dergi Adı: BIOMEDICAL MATERIALS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

The importance of provision of growth factors in the engineering of tissues has long been shown to control the behavior of the cells within the construct and several approaches were applied toward this end. In nature, more than one type of growth factor is known to be effective during the healing of tissue defects and their peak concentrations are not always simultaneous. One of the most recent strategies includes the delivery of a combination of growth factors with the dose and timing to mimic the natural regeneration cascade. The sequential delivery of bone morphogenetic proteins BMP-2 and BMP-7 which are early and late appearing factors during bone regeneration, respectively, was shown in vitro to enhance osteoblastic differentiation of bone marrow derived mesenchymal stem cells. In the present study, the aim was to study the effectiveness of this delivery strategy in a rabbit iliac crest model. 3D plotted poly(epsilon-caprolactone) scaffolds were loaded with BMP carrying nanoparticles to achieve: (a) single BMP-2 or BMP-7 delivery, and (b) their combined delivery in a simultaneous or (c) sequential (biomimetic) fashion. After eight weeks of implantation, computed tomography and biomechanical tests showed better mineralized matrix formation and bone-implant union strength at the defect site in the case of sequential delivery compared to single or simultaneous delivery modes. Bone mineral density (BMD) and push-out stress were: 33.65 +/- 2.25 g cm(-3) and 14.5 +/- 2.28 MPa, respectively, and almost 2.5 fold higher in comparison to those without growth factors (BMD: 14.14 +/- 1.21 g cm(-3); PS: 6.59 +/- 0.65 MPa). This study, therefore, supports those obtained in vitro and emphasizes the importance of mimicking the natural timing of bioavailability of osteogenic factors in improving the regeneration of critical-sized bone defects.