Highly Accurate Pseudospectral Approximations of the Prolate Spheroidal Wave Equation for Any Bandwidth Parameter and Zonal Wavenumber


Alici H., Shen J.

JOURNAL OF SCIENTIFIC COMPUTING, cilt.71, sa.2, ss.804-821, 2017 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 71 Sayı: 2
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1007/s10915-016-0321-7
  • Dergi Adı: JOURNAL OF SCIENTIFIC COMPUTING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.804-821
  • Orta Doğu Teknik Üniversitesi Adresli: Hayır

Özet

The prolate spheroidal wave equation (PSWE) is transformed, using suitable mappings, into three different canonical forms which resemble the Jacobi, Laguerre and the Hermite differential equations. The eigenpairs of the PSWE are approximated with the corresponding classical orthogonal polynomial as a basis set. It is observed that for any zonal wavenumber m the Jacobi type pseudospectral methods are well suited for small bandwidth parameters c whereas the Hermite and Laguerre pseudospectral methods are appropriate for very large c values. Moreover, Jacobi pseudospectral methods work well for any parameter values such that . Our numerical results confirm that for any values of m, the Jacobi and the Laguerre pseudospectral methods formulated in this article for the numerical solution of the PSWE with small and very large bandwidth parameters, respectively, are highly efficient both from the accuracy and fastness point of view.