IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San-Jose, Costa Rica, 15 - 19 July 2013
This study presents an efficient super-pixel extraction algorithm with major contributions to the state-of-the-art in terms of accuracy and computational complexity. Segmentation accuracy is improved through convexity constrained geodesic distance utilization; while computational efficiency is achieved by replacing complete region processing with boundary adaptation idea. Starting from the uniformly distributed rectangular equal-sized super-pixels, region boundaries are adapted to intensity edges iteratively by assigning boundary pixels to the most similar neighboring super-pixels. At each iteration, super-pixel regions are updated and hence progressively converging to compact pixel groups. Experimental results with state-of-the-art comparisons, validate the performance of the proposed technique in terms of both accuracy and speed.