Local improvements to reduced-order approximations of optimal control problems governed by diffusion-convection-reaction equation


Akman T.

COMPUTERS & MATHEMATICS WITH APPLICATIONS, cilt.70, sa.2, ss.104-131, 2015 (SCI İndekslerine Giren Dergi) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 70 Konu: 2
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1016/j.camwa.2015.04.017
  • Dergi Adı: COMPUTERS & MATHEMATICS WITH APPLICATIONS
  • Sayfa Sayıları: ss.104-131

Özet

We consider the optimal control problem governed by diffusion-convection-reaction equation without control constraints. The proper orthogonal decomposition (POD) method is used to reduce the dimension of the problem. The POD method may lack accuracy if the POD basis depending on a set of parameters is used to approximate the problem depending on a different set of parameters. To increase the accuracy and the robustness of the basis, we compute five bases additional to the baseline POD in case of the perturbation of the diffusion term, a parameter in the convection field, the reaction term and Tikhonov regularization term. For the first two bases, we use the sensitivity information to extrapolate and expand the baseline POD basis. The other one is based on the subspace angle interpolation method. Multiple snapshot sets are used to derive the last two bases. A-posteriori error estimator is used to analyse the difference between the suboptimal control, computed using the POD basis, and the optimal control. We compare these different bases in terms of accuracy and complexity, investigate the advantages and main drawbacks of them. (C) 2015 Elsevier Ltd. All rights reserved.