Uncertainty Calculation as a Service: Integrating Cloud-Based Microservices for Enhanced Calibration and DCC Generation


Creative Commons License

Çetinkaya A., Kaya M. C., Danaci E., Oğuztüzün M. H. S.

SENSORS, cilt.24, sa.17, ss.1-24, 2024 (SCI-Expanded)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 24 Sayı: 17
  • Basım Tarihi: 2024
  • Doi Numarası: 10.3390/s24175651
  • Dergi Adı: SENSORS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, Compendex, INSPEC, MEDLINE, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.1-24
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

The calibration industry is renowned for its diverse and sophisticated equipment and complex processes, which necessitate innovative solutions to keep pace with rapidly advancing technology. This paper introduces an enhancement to an existing microservice-based cloud architecture, aimed at effectively managing the inherent complexity within this field. The enhanced architecture seamlessly integrates various equipment types and communication technologies, aligning diverse stakeholder expectations into a unified system that ensures efficient and accurate calibration processes. It highlights the integration of microservices to facilitate various methods of uncertainty calculation and the generation of digital calibration certificates (DCCs). A case study on RF power measurement illustrates the practical application and benefits of the enhanced architecture. Although initially focused on RF power measurement, the flexible architecture allows for future expansions to accommodate new standards and measurement techniques. The enhanced system offers a comprehensive approach to managing data flow from calibration equipment to the final generation of DCCs, utilizing cloud-based services for efficient data processing. As a future direction, this extension sets the groundwork for broader applicability across multiple measurement types, ensuring readiness for upcoming advancements in metrology.

The calibration industry is renowned for its diverse and sophisticated equipment and complex processes, which necessitate innovative solutions to keep pace with rapidly advancing technology. This paper introduces an enhancement to an existing microservice-based cloud architecture, aimed at effectively managing the inherent complexity within this field. The enhanced architecture seamlessly integrates various equipment types and communication technologies, aligning diverse stakeholder expectations into a unified system that ensures efficient and accurate calibration processes. It highlights the integration of microservices to facilitate various methods of uncertainty calculation and the generation of digital calibration certificates (DCCs). A case study on RF power measurement illustrates the practical application and benefits of the enhanced architecture. Although initially focused on RF power measurement, the flexible architecture allows for future expansions to accommodate new standards and measurement techniques. The enhanced system offers a comprehensive approach to managing data flow from calibration equipment to the final generation of DCCs, utilizing cloud-based services for efficient data processing. As a future direction, this extension sets the groundwork for broader applicability across multiple measurement types, ensuring readiness for upcoming advancements in metrology.