Systematic investigation on combustion characteristics and emission-reduction mechanism of potentially toxic elements in biomass- and biochar-coal co-combustion systems


Yousaf B., Liu G., Abbas Q., Wang R., Ali M. U., Ullah H., ...Daha Fazla

APPLIED ENERGY, cilt.208, ss.142-157, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 208
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1016/j.apenergy.2017.10.059
  • Dergi Adı: APPLIED ENERGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.142-157
  • Anahtar Kelimeler: Biochar-coal blend, Combustion characteristics, Emission-reduction, Potentially toxic elements, Co-combustion system, LOW-TEMPERATURE PYROLYSIS, MUNICIPAL SOLID-WASTE, HEAVY-METALS, TRACE-ELEMENT, HYDROTHERMAL CARBONIZATION, FUEL CHARACTERISTICS, THERMAL-BEHAVIOR, BED COMBUSTION, WOODY BIOMASS, LIGNITE
  • Orta Doğu Teknik Üniversitesi Adresli: Hayır

Özet

Thermochemically converted biochar is considered as one of the promising alternative solid-fuel due to its high carbon contents of up to 80%, and has great potential to produce environmentally-friendly green-energy by improved fuel properties and emission-reduction of potentially toxic elements (PTEs). In this study, the biochar fuels, produced from peanut shell (PS) and wheat straw (WS) at 300, 500 and 700 degrees C, alone and blended with coal at mass ratio of 20% and 50% were systematically investigated for combustion characteristics and their potential to reduce the emission of PTEs including As, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Ga, Ni, Pb, Sb, Sn, V and Zn in relation to partitioning, retention and volatilization in the co-combustion systems, using a variety of experimental techniques. Results indicated that the biochar-coal blended fuels in equal proportion showed steady state combustion over broad temperature range resulting increased the combustion efficiency and improved the thermal characteristics in comparison to coal and/or biomass-coal fuels. In addition, soot yield, CO emission and un-burned carbon in fly ash reduced significantly in biochar-blended fuels. However, CO2 emission from biochar-coal co-combustion was comparable to coal and/or biomass-coal fuels. Moreover, the present study illustrated that the volatilization potential of PTEs during combustion of biochar and their blends with coal decreased considerably up to 21% compared to that of coal, and enrichment of these contaminants occurred in the bottom and fly ashes ranged from 15.38-65% and 24.54-74.29%, respectively. Slagging and fouling problems were still found with biochar-coal co-combustion due to the higher inorganic fraction of biochar, which were overcome with the hydrothermal washing of fuels. Thus, it can be concluded that biochar-coal co-combustion is a suitable option for its use in existing coal-fired energy generation system to achieve the sustainable clean-green energy and reduction of gaseous PTEs emission.