Bicriteria scheduling of a material handling robot in an m-machine cell to minimize the energy consumption of the robot and the cycle time


Gultekin H., GÜREL S., Taspinar R.

Robotics and Computer-Integrated Manufacturing, cilt.72, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 72
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1016/j.rcim.2021.102207
  • Dergi Adı: Robotics and Computer-Integrated Manufacturing
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Business Source Elite, Business Source Premier, Communication Abstracts, Computer & Applied Sciences, INSPEC, Metadex, Civil Engineering Abstracts
  • Anahtar Kelimeler: Bicriteria scheduling, Robotic cell, Energy consumption, Robot speed control, Second order cone programming, OPTIMIZATION, PARTS
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

© 2021 Elsevier LtdThis study considers a flowshop type production system consisting of m machines. A material handling robot transports the parts between the machines and loads and unloads the machines. We consider the sequencing of the robot moves and determining the speeds of these moves simultaneously. These decisions affect both the robot's energy consumption and the production speed of the system. In this study, these two objectives are considered simultaneously. We propose a second order cone programming formulation to find Pareto efficient solutions. We also develop a heuristic algorithm that finds a set of approximate Pareto efficient solutions. The conic formulation can find robot schedules for small cells with less number of machines in reasonable computation times. Our heuristic algorithm can generate a large set of approximate Pareto efficient solutions in a very short computational time. Proposed solution approaches help the decision-maker to achieve the best trade-off between the throughput of a cell and the energy efficiency of a material handling robot.