Analysis of the Heat Capacity for Pure CH4 and CH4/CCl4 on Graphite Near the Melting Point and Calculation of the T-X Phase Diagram for(CH3)CCl3+CCl4

Creative Commons License

YURTSEVEN H. H. , Yilmaz A.

FRONTIERS IN PHYSICS, vol.4, 2016 (Journal Indexed in SCI) identifier

  • Publication Type: Article / Article
  • Volume: 4
  • Publication Date: 2016
  • Doi Number: 10.3389/fphy.2016.00024
  • Title of Journal : FRONTIERS IN PHYSICS


We study the temperature dependence of the heat capacity C-p for the pure CH4 and the coadsorbed CH4/CCl4 on graphite near the melting point. The heat capacity peaks are analyzed using the experimental data from the literature by means of the power-law formula. The critical exponents for the heat capacity are deduced below and above the melting point for CH4 (T-m = 104.8 K) and CH4/CCl4 (T-m = 99.2 K). Our exponent values are larger as compared with the predicted values of some theoretical models exhibiting second order transition. Our analyses indicate that the pure methane shows a nearly second order (weak discontinuity in the heat capacity peak), whereas the transition in coadsorbed CH4/CCl4 is of first order (apparent discontinuity in Cp). We also study the T - X phase diagram of a two-component system of CH3CCl3+CCl4 using the Landau phenomenological model. Phase lines of the R+L (rhombohedral+liquid) and FCC+L (face-centred cubic + liquid) are calculated using the observed T - X phase diagram of this binary mixture. Our results show that the Landau mean field theory describes the observed behavior of CH3CCl3+CCl4 adequately. From the calculated T - X phase diagram, critical behavior of some thermodynamic quantities can be predicted at various temperatures and concentrations (CCl4) for a binary mixture of CH3CCl3+CCl4.