On the Lie symmetries of Kepler-Ermakov systems


Karasu A. , Yildirim H.

JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, cilt.9, ss.475-482, 2002 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 9 Konu: 4
  • Basım Tarihi: 2002
  • Doi Numarası: 10.2991/jnmp.2002.9.4.8
  • Dergi Adı: JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS
  • Sayfa Sayıları: ss.475-482

Özet

In this work, we study the Lie-point symmetries of Kepler-Ermakov systems presented by C Athorne in J. Phys. A24 (1991), L1385-L1389. We determine the forms of arbitrary function H (x,y) in order to find the members of this class possessing the sl(2,R) symmetry and a Lagrangian. We show that these systems are usual Ermakov systems with the frequency function depending on the dynamical variables.