Projecting the Course of COVID-19 in Turkey: A Probabilistic Modeling Approach.


Creative Commons License

Acar A. C. , Er A. G. , Burduroğlu H. C. , Sülkü S. N. , Aydin Son Y. , Akin L., ...Daha Fazla

Turkish journal of medical sciences, sa.0, 2020 (SCI Expanded İndekslerine Giren Dergi) identifier

  • Cilt numarası: Konu: 0
  • Basım Tarihi: 2020
  • Doi Numarası: 10.3906/sag-2005-378
  • Dergi Adı: Turkish journal of medical sciences

Özet

The COVID-19 Pandemic originated in Wuhan, China, in December 2019 and became one of the worst global health crises ever. While struggling with the unknown nature of this novel coronavirus, many researchers and groups attempted to project the progress of the pandemic using empirical or mechanistic models, each one having its drawbacks. The first confirmed cases were announced early in March, and since then, serious containment measures have taken place in Turkey. MATERIALS AND METHODS:Here, we present a different approach, a Bayesian negative binomial multilevel model with mixed effects, for the projection of the COVID-19 pandemic and apply this model to the Turkish case. The model source code is available at https://github.com/kansil/covid-19. We predicted confirmed daily cases and cumulative numbers for June 6th to June 26th with 80%, 95% and 99% prediction intervals (PI). RESULTS:Our projections showed that if we continued to comply with measures and no drastic changes are seen in diagnosis or management protocols, the epidemic curve would tend to decrease in this time interval. Also, the predictive validity analysis suggests that proposed model projections should be in the 95% PI band for the first 12 days of the projections. CONCLUSION:We expect that drastic changes in the course of the COVID-19 in Turkey will cause the model to suffer in predictive validity, and this can be used to monitor the epidemic. We hope that the discussion on these projections and the limitations of the epidemiological forecasting will be beneficial to the medical community, and policy-makers.

The COVID-19 Pandemic originated in Wuhan, China, in December 2019 and became one of the worst global health crises ever. While struggling with the unknown nature of this novel coronavirus, many researchers and groups attempted to project the progress of the pandemic using empirical or mechanistic models, each one having its drawbacks. The first confirmed cases were announced early in March, and since then, serious containment measures have taken place in Turkey. MATERIALS AND METHODS:Here, we present a different approach, a Bayesian negative binomial multilevel model with mixed effects, for the projection of the COVID-19 pandemic and apply this model to the Turkish case. The model source code is available at https://github.com/kansil/covid-19. We predicted confirmed daily cases and cumulative numbers for June 6th to June 26th with 80%, 95% and 99% prediction intervals (PI). RESULTS:Our projections showed that if we continued to comply with measures and no drastic changes are seen in diagnosis or management protocols, the epidemic curve would tend to decrease in this time interval. Also, the predictive validity analysis suggests that proposed model projections should be in the 95% PI band for the first 12 days of the projections. CONCLUSION:We expect that drastic changes in the course of the COVID-19 in Turkey will cause the model to suffer in predictive validity, and this can be used to monitor the epidemic. We hope that the discussion on these projections and the limitations of the epidemiological forecasting will be beneficial to the medical community, and policy-makers.