Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, vol.17, no.5, pp.621-638, 2010 (Scopus)
In this paper, a new version of the quasisecant method for nonsmooth nonconvex optimization is developed. Quasisecants are overestimates to the objective function in some neighborhood of a given point. Subgradients are used to obtain quasisecants. We describe classes of nonsmooth functions where quasisecants can be computed explicitly. We show that a descent direction with suffcient decrease must satisfy a set of linear inequalities. In the proposed algorithm this set of linear inequalities is solved by applying the subgradient algorithm to minimize a piecewise linear function. We compare results of numerical experiments between the proposed algorithm and subgradient method. Copyright © 2010 Watam Press.