Next-generation liquefaction database


Brandenberg S. J., Zimmaro P., Stewart J. P., Kwak D. Y., Franke K. W., Moss R. E. S., ...Daha Fazla

EARTHQUAKE SPECTRA, cilt.36, sa.2, ss.939-959, 2020 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 36 Sayı: 2
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1177/8755293020902477
  • Dergi Adı: EARTHQUAKE SPECTRA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, PASCAL, Aerospace Database, Communication Abstracts, Compendex, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.939-959
  • Anahtar Kelimeler: Liquefaction, database, Jupyter, geotechnical, observation, site, investigation, DETERMINISTIC ASSESSMENT, PACIFIC COAST, MODEL, SUBSIDENCE, EARTHQUAKE, DAMAGE
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

The Next-Generation Liquefaction database is a resource for the geotechnical hazard community. It is publicly available online under the following digital object identifier (DOI): 10.21222/C2J040. The database organizes objective liquefaction data into tables and fields (columns of information), with the relationships among the tables and fields described by a schema. The data are organized into tables pertaining to (1) sites, including geotechnical and geophysical site investigation data, surface geology information, and laboratory test data; (2) earthquake events, including source and ground motion information; and (3) observations of sites following events. The schema was vetted through community outreach efforts involving multiple workshops and meetings. Users can view the data, download existing data, and upload new data through a geographic information system (GIS)-based graphical user interface. Information uploaded to the database is reviewed by a database working group to verify consistency between uploaded data and source documents. The database is replicated in DesignSafe where users can interact with the data using Python scripts in Jupyter notebooks, view point cloud data using Potree, and interact with geospatial data using QGIS.