IEEE Transactions on Sustainable Computing, 2024 (SCI-Expanded)
Vehicle-to-grid (V2G) energy trading based on distributed ledger technologies (DLT), such as blockchains, has attracted much attention due to its promising features, including ease of deployment, decentralization, transparency, and security. However, existing DLT-based models do not support microtransactions due to the low value of such transactions relative to the incentives offered to transaction verifiers. To address this issue, we propose an IOTA DLT-based efficient and secure energy trading model for V2G networks, where electric vehicles (EVs) and grids negotiate energy prices in an off-chain manner. The proposed model utilizes a privacy-preserving protocol to prevent real-time tracking of EV locations. We develop a Stackelberg game model to represent the interactions between the EVs and grids, from which we derive a pricing scheme and propose a deposit mechanism to prevent fake energy trading between the EVs and grids. Extensive simulations demonstrate that our proposed scheme outperforms existing V2G energy trading mechanisms regarding transaction efficiency, provides enhanced EV privacy, and improves resilience against fake energy trading.Offering robust computational performance and addressing computational complexity (time, space, and message), our model presents a comprehensive V2G energy trading solution, balancing efficiency, security, and privacy.