1-D Transforms for the Motion Compensation Residual


Creative Commons License

Kamisli F., Lim J. S.

IEEE TRANSACTIONS ON IMAGE PROCESSING, vol.20, no.4, pp.1036-1046, 2011 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 20 Issue: 4
  • Publication Date: 2011
  • Doi Number: 10.1109/tip.2010.2083675
  • Journal Name: IEEE TRANSACTIONS ON IMAGE PROCESSING
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.1036-1046
  • Keywords: Discrete cosine transforms (DCTs), motion compensation (MC), video coding, FRAME DIFFERENCE, REPRESENTATION
  • Middle East Technical University Affiliated: Yes

Abstract

Transforms used in image coding are also commonly used to compress prediction residuals in video coding. Prediction residuals have different spatial characteristics from images, and it is useful to develop transforms that are adapted to prediction residuals. In this paper, we explore the differences between the characteristics of images and motion compensated prediction residuals by analyzing their local anisotropic characteristics and develop transforms adapted to the local anisotropic characteristics of these residuals. The analysis indicates that many regions of motion compensated prediction residuals have 1-D anisotropic characteristics and we propose to use 1-D directional transforms for these regions. We present experimental results with one example set of such transforms within the H.264/AVC codec and the results indicate that the proposed transforms can improve the compression efficiency of motion compensated prediction residuals over conventional transforms.