Poisson integrators


Karasozen B.

MATHEMATICAL AND COMPUTER MODELLING, cilt.40, ss.1225-1244, 2004 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 40
  • Basım Tarihi: 2004
  • Doi Numarası: 10.1016/j.mcm.2005.01.015
  • Dergi Adı: MATHEMATICAL AND COMPUTER MODELLING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1225-1244
  • Anahtar Kelimeler: Hamiltonian ODEs and PDEs, symplectic integrators, Lie-Poisson systems, Bi-Hamiltonian systems, integrable discretizations, Nambu-Hamiltonian systems, NONLINEAR SCHRODINGER-EQUATION, GENERALIZED NAMBU MECHANICS, KUTTA COLLOCATION METHODS, BI-HAMILTONIAN SYSTEMS, SYMPLECTIC INTEGRATORS, GEOMETRIC INTEGRATORS, DISCRETIZATIONS, MANIFOLDS, SCHEMES, CONSTRUCTION
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

An overview of Hamiltonian systems with noncanonical Poisson structures is given. Examples of bi-Hamiltonian ODEs, PDEs, and lattice equations are presented. Numerical integrators using generating functions, Hamiltonian splitting, symplectic Runge-Kutta methods are discussed for Lie-Poisson. systems and Hamiltonian systems with a general Poisson structure. Nambu-Poisson systems and the discrete gradient methods are also presented. (C) 2005 Elsevier Ltd. All rights reserved.