THE COMPLEXITY OF THE TOPOLOGICAL CONJUGACY PROBLEM FOR TOEPLITZ SUBSHIFTS


Creative Commons License

Kaya B.

ISRAEL JOURNAL OF MATHEMATICS, cilt.220, sa.2, ss.873-897, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 220 Sayı: 2
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1007/s11856-017-1537-4
  • Dergi Adı: ISRAEL JOURNAL OF MATHEMATICS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.873-897
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

In this paper, we analyze the Borel complexity of the topological conjugacy relation on Toeplitz subshifts. More specifically, we prove that topological conjugacy of Toeplitz subshifts with separated holes is hyperfinite. Indeed, we show that the topological conjugacy relation is hyperfinite on a larger class of Toeplitz subshifts which we call Toeplitz subshifts with growing blocks. This result provides a partial answer to a question asked by Sabok and Tsankov.