Multi-band (9,4) chiral single-walled carbon nanotube based metamaterial absorber for solar cells


Obaidullah M., Esat V., Sabah C.

OPTICS AND LASER TECHNOLOGY, cilt.134, 2021 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 134
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1016/j.optlastec.2020.106623
  • Dergi Adı: OPTICS AND LASER TECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Computer & Applied Sciences, INSPEC, Metadex, Civil Engineering Abstracts
  • Orta Doğu Teknik Üniversitesi Adresli: Hayır

Özet

A novel multiband (9,4) polarization insensitive metamaterial (MTM) absorber structure based on the vertical nanotubes composited with the silicon dielectric material is proposed in this research. Multiband polarization insensitivity is achieved through the unique geometrical configuration of the design, which provides almost unity absorption in the visible and ultraviolet regions from 300 THz to 1000 THz. The proposed design is selected due to the simplicity of the construction, ease of fabrication and the ability to absorb almost perfectly under changing geometrical parameters. The electromagnetic response of the design is simulated for four maximum absorption peaks at 394.3 THz, 514.9 THz, 632.8 THz, and 773.2 THz with the corresponding absorption rates of 99.8%, 98.35%, 96.66%, and 80.60%, respectively. The sensitivity of the polarization angle of the MTM absorber has also been investigated, which verifies that the current design is insensitive to the different polarization angles. The flexibility of the proposed design has also been investigated by altering the geometrical components, ma-terials, and the dimensions, and it is confirmed that the proposed MTM absorber design provides high absorption rates under all considered circumstances. The MTM absorber designs is found to be capable of improving the efficiency of the solar cell. The implementation of these MTM absorbers in the solar cells can significantly improve the absorption rate by reducing the reflection and transmission. MTM is validated by both prior art investigation and the different solver such as FEM and FIT. Results of interface theory model and simulations are compared against one another, which show good agreement yielding reliable and accurate estimations.