Jordan type of a k[C(p)xC(p)]-module


ÖZTÜRK S.

NEW YORK JOURNAL OF MATHEMATICS, pp.307-313, 2011 (Journal Indexed in SCI) identifier

  • Publication Type: Article / Article
  • Publication Date: 2011
  • Title of Journal : NEW YORK JOURNAL OF MATHEMATICS
  • Page Numbers: pp.307-313

Abstract

Let E be the elementary abelian group C(p)xC(p), k a field of characteristic p, M a finite dimensional module over the group algebra k[E] and J the Jacobson radical J of k[E]. We prove that the decomposition of M when considered as a k[< 1+ x >]-module for a p-point x in J is well defined modulo J(p).