CXXC5 as an unmethylated CpG dinucleotide binding protein contributes to estrogen-mediated cellular proliferation.

Ayaz G., Razizadeh N., Yaşar P., Kars G., Kahraman D. C. , Saatci Ö., ...More

Scientific reports, vol.10, pp.5971, 2020 (Peer-Reviewed Journal) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 10
  • Publication Date: 2020
  • Doi Number: 10.1038/s41598-020-62912-0
  • Journal Name: Scientific reports
  • Journal Indexes: Science Citation Index Expanded, Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Page Numbers: pp.5971


Evidence suggests that the CXXC type zinc finger (ZF-CXXC) protein 5 (CXXC5) is a critical regulator/integrator of various signaling pathways that include the estrogen (E2)-estrogen receptor alpha (ER alpha). Due to its ZF-CXXC domain, CXXC5 is considered to be a member of the ZF-CXXC family, which binds to unmethylated CpG dinucleotides of DNA and through enzymatic activities for DNA methylation and/or chromatin modifications generates a chromatin state critical for gene expressions. Structural/functional features of CXXC5 remain largely unknown. CXXC5, suggested as transcription and/or epigenetic factor, participates in cellular proliferation, differentiation, and death. To explore the role of CXXC5 in E2-ER alpha mediated cellular events, we verified by generating a recombinant protein that CXXC5 is indeed an unmethylated CpG binder. We uncovered that CXXC5, although lacks a transcription activation/repression function, participates in E2-driven cellular proliferation by modulating the expression of distinct and mutual genes also regulated by E2. Furthermore, we found that the overexpression of CXXC5, which correlates with mRNA and protein levels of ER alpha, associates with poor prognosis in ER-positive breast cancer patients. Thus, CXXC5 as an unmethylated CpG binder contributes to E2-mediated gene expressions that result in the regulation of cellular proliferation and may contribute to ER-positive breast cancer progression.