Fine-Pitch Interconnect Modeling Using Physics-Informed Neural Networks


Tosun R. A., Kuzucu D., DURGUN A. C., Baydogan M. G.

29th IEEE Workshop on Signal and Power Integrity, SPI 2025, Gaeta, İtalya, 11 - 14 Mayıs 2025, (Tam Metin Bildiri) identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Doi Numarası: 10.1109/spi64682.2025.11014453
  • Basıldığı Şehir: Gaeta
  • Basıldığı Ülke: İtalya
  • Anahtar Kelimeler: fine-pitch interconnect, hard-constrained boundary conditions,quasi-static, physics-informed neural networks, superposition
  • Orta Doğu Teknik Üniversitesi Adresli: Evet

Özet

Physics-informed neural networks (PINNs) have been demonstrated to solve partial differential equations (PDEs) effectively and show promise in electromagnetic (EM) analysis. In this study, we compare several PINN implementations for quasi-static modeling of fine-pitch interconnects. Our results indicate that imposing hard-constrained boundary conditions and implementing a superposition-based solution significantly improves the accuracy of multi-conductor interconnect modeling.