Free bending vibrations of a centrally bonded symmetric double lap joint (or symmetric double doubler joint) with a gap in mindlin plates or panels

Yuceoglu U., Guvendik O., Ozerciyes V.

ASME International Mechanical Engineering Congress and Exposition, Washington, United States Of America, 10 - 16 November 2007, pp.151-167 identifier

  • Publication Type: Conference Paper / Full Text
  • City: Washington
  • Country: United States Of America
  • Page Numbers: pp.151-167
  • Middle East Technical University Affiliated: Yes


In this present study, the "Free Bending Vibrations of a Centrally Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint) with a Gap in Mindlin Plates or Panels" are theoretically analyzed and are numerically solved in some detail. The "plate adherends" and the upper and lower "doubler plates" of the "Bonded Joint" system are considered as dissimilar, orthotropic "Mindlin Plates" joined through the dissimilar upper and lower very thin adhesive layers. There is a symmetrically and centrally located "Gap" between the "plate adherends" of the joint system. In the "adherends" and the "doublers" of the "Bonded Joint" assembly, the transverse shear deformations and the transverse and rotary moments of inertia are included in the analysis. The relatively very thin adhesive layers are assumed to be linearly elastic continua with transverse normal and shear stresses. The "damping effects" in the entire "Bonded Joint" system are neglected. The sets of the dynamic "Mindlin Plate" equations of the "plate adherends", the "double doubler plates" and the thin adhesive layers are combined together with the orthotropic stress resultant-displacement expressions in a "special form". This system of equations, after some further manipulations, is eventually reduced to a set of the "Governing System of the First Order Ordinary Differential Equations" in terms of the "state vectors" of the problem. Hence, the final set of the aforementioned "Governing Systems of Equations" together with the "Continuity Conditions" and the "Boundary conditions" facilitate the present solution procedure. This is the "Modified Transfer Matrix Method (MTMM) (with Interpolation Polynomials). The present theoretical formulation and the method of solution are applied to a typical "Bonded Symmetric Double Lap Joint (or Symmetric Double Doubler Joint) with a Gap". The effects of the relatively stiff (or "hard") and the relatively flexible (or "soft") adhesive properties, on the natural frequencies and mode shapes are considered in detail. The very interesting mode shapes with their dimensionless natural frequencies are presented for various sets of boundary conditions. Also, several parametric studies of the dimensionless natural frequencies of the entire system are graphically presented. From the numerical results obtained, some important conclusions are drawn for the "Bonded Joint System" studied here.