Approximate l-state solutions of the D-dimensional Schrodinger equation for Manning-Rosen potential

Creative Commons License

IKHDAİR S., Sever R.

ANNALEN DER PHYSIK, cilt.17, sa.11, ss.897-910, 2008 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 17 Konu: 11
  • Basım Tarihi: 2008
  • Doi Numarası: 10.1002/andp.200810322
  • Sayfa Sayıları: ss.897-910


The Schrodinger equation in D-dimensions for the Manning-Rosen potential with the centrifugal term is solved approximately to obtain bound states eigensolutions (eigenvalues and eigenfunctions). The Nikiforov-Uvarov (NU) method is used in the calculations. We present numerical calculations of energy eigenvalues to two- and four-dimensional systems for arbitrary quantum numbers n and 1, with three different values of the potential parameter alpha. It is shown that because of the interdimensional degeneracy of eigenvalues, we can also reproduce eigenvalues of a upper/lower dimensional system from the well-known eigenvalues of a lower/upper dimensional system by means of the transformation (n, l, D) -> (n, l +/- 1, D +/- 2). This solution reduces to the Hulthen potential case.