ANNALS OF OPERATIONS RESEARCH, cilt.182, ss.87-117, 2011 (SCI İndekslerine Giren Dergi)
For dynamic scheduling of multi-class systems where backorder cost is incurred per unit backordered regardless of the time needed to satisfy backordered demand, the following models are considered: the cost model to minimize the sum of expected average inventory holding and backorder costs and the service model to minimize expected average inventory holding cost under an aggregate fill rate constraint. Use of aggregate fill rate constraint in the service model instead of an individual fill rate constraint for each class is justified by deriving equivalence relations between the considered cost and service models. Based on the numerical investigation that the optimal policy for the cost model is a base-stock policy with switching curves and fixed base-stock levels, an alternative service model is considered over the class of base-stock controlled dynamic scheduling policies to minimize the total inventory (base-stock) investment under an aggregate fill rate constraint. The policy that solves this alternative model is proposed as an approximation of the optimal policy of the original cost and the equivalent service models. Very accurate heuristics are devised to approximate the proposed policy for given base-stock levels. Comparison with base-stock controlled First Come First Served (FCFS) and Longest Queue (LQ) policies and an extension of LQ policy (Delta policy) shows that the proposed policy performs much better to solve the service models under consideration, especially when the traffic intensity is high.