Facile Synthesis of Three-Dimensional Pt-TiO2 Nano-networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane

Creative Commons License

Khalily M. A. , Eren H., Akbayrak S., Susapto H. H. , BIYIKLI N., ÖZKAR S. , ...More

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, vol.55, no.40, pp.12257-12261, 2016 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 55 Issue: 40
  • Publication Date: 2016
  • Doi Number: 10.1002/anie.201605577
  • Page Numbers: pp.12257-12261


Three-dimensional (3D) porous metal and metal oxide nanostructures have received considerable interest because organization of inorganic materials into 3D nanomaterials holds extraordinary properties such as low density, high porosity, and high surface area. Supramolecular self-assembled peptide nanostructures were exploited as an organic template for catalytic 3D Pt-TiO2 nano-network fabrication. A 3D peptide nanofiber aerogel was conformally coated with TiO2 by atomic layer deposition (ALD) with angstrom-level thickness precision. The 3D peptide-TiO2 nano-network was further decorated with highly monodisperse Pt nanoparticles by using ozone-assisted ALD. The 3D TiO2 nano-network decorated with Pt nanoparticles shows superior catalytic activity in hydrolysis of ammonia-borane, generating three equivalents of H-2.