JOURNAL OF ELECTROCERAMICS, vol.20, pp.175-185, 2008 (SCI-Expanded)
This study presents the design and implementation of a spatial H(infinity) controller for the active vibration control of a smart beam. The smart beam was modeled by assumed-modes method that results in a model including large number of resonant modes. The order of the model was reduced by direct model truncation and the model correction technique was applied to compensate the effect of the contribution of the out of range modes to the dynamics of the system. Additionally, spatial identification of the beam was performed, by comparing the analytical and experimental system models, in order to determine the modal damping ratios of the smart beam. Then, the spatial H(infinity) controller was designed and implemented to suppress the first two flexural vibrations of the smart beam.