BIOENGINEERING FUNCTIONAL COPOLYMERS. XV. SYNTHESIS OF ORGANOBORON AMIDE-ESTER BRANCHED DERIVATIVES OF OLIGO(MALEIC ANHYDRIDE) AND THEIR INTERACTION WITH HeLa AND L929 FIBROBLAST CELLS


Kahraman G., TÜRK M., Rzayev Z. M. O. , Unsal M. E. , Soylemez E.

COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, cilt.76, ss.1013-1031, 2011 (SCI İndekslerine Giren Dergi)

  • Cilt numarası: 76 Konu: 8
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1135/cccc2010080
  • Dergi Adı: COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS
  • Sayfa Sayısı: ss.1013-1031

Özet

Novel bioengineering functional organoboron oligomers were synthesized by (i) amidolysis of oligo(maleic anhydride) (OMA) with 2-aminoethyldiphenylborinate (2-AEPB), (ii) esterification of organoboron oligomer (OMA-B) with alpha-hydroxy-omega-methoxypoly(ethylene oxide) (PEO) as a compatibilizer and (iii) conjugation of organoboron PEO branches (OMA-B-PEO) with folic acid as a taggering agent. Structure and composition of the synthesized oligomers were characterized by FTIR-ART and (1)H ((13)C) NMR spectroscopy, chemical and physical analysis methods. Interaction of functional oligomers and oligomer center dot center dot center dot FA complex (OMA-B-PEO-F) with HeLa and L929 fibroblast cells were investigated by using different biochemical methods such as cytotoxicity, statistical, apoptotic and necrotic cell indexes, double staining and caspase-3 immunostaining, light and fluorescence inverted microscope analyses. It was found that citotoxisity and apoptotic/necrotic effects of oligomers significantly depend on the structure and composition of studied oligomers, and increase the following raw: OMA << OMA-B < OMA-B-PEO < OMA-B-PEO-F. A folic acid complex (MA-PEG-B-F) at 400 mu g ml(-1) (2.36 mu mol ml(-1)) concentration as a therapeutic drug exhibits minimal toxcisity toward the fibroblast cells, but influential for HeLa cells.