ACI STRUCTURAL JOURNAL, cilt.109, sa.4, ss.531-540, 2012 (SCI-Expanded)
The energy dissipation capacity of reinforced concrete (RC) columns is investigated under inelastic cyclic displacements. Experimental data are obtained from 20 column specimens tested under constant-amplitude displacement cycles and from three column specimens tested under variable-amplitude displacement cycles. The effect of failure mode, displacement ductility, material properties, and detailing on the energy dissipation capacity of columns is investigated first under constant-amplitude loading. A simple model is developed for predicting the cyclic energy dissipation capacity under constant-amplitude inelastic displacement cycles. Then, an analytical procedure is introduced for estimating the energy dissipation under variable-amplitude displacement cycles by using the energy dissipation capacity, under constant-amplitude displacements. The proposed procedure is verified with the test results.