IEEE TRANSACTIONS ON AUTOMATIC CONTROL, vol.64, pp.2529-2536, 2019 (SCI-Expanded)
This paper proposes a new methodology for subspace-based state-space identification for linear time-periodic (LTP) systems. Since LTP systems can be lifted to equivalent linear time-invariant (LTI) systems, we first lift input-output data from an unknown LTP system as if they were collected from an equivalent LTI system. Then, we use frequency-domain subspace identification methods to find the LTI system estimate. Subsequently. we propose a novel method to obtain a time-periodic realization for the estimated lifted LTI system by exploiting the specific parametric structure of Fourier series coefficients of the frequency-domain lifting method. Our method can be used to obtain state-space estimates for unknown LTP systems as well as to obtain Floquet transforms for known LTP systems.