Scanning Hall Probe Microscopy (SHPM) using quartz crystal AFM feedback


Creative Commons License

Dede M., Uerkmen K., Girisen O., Atabak M., Oral A., Farrer I., ...Daha Fazla

JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, cilt.8, sa.2, ss.619-622, 2008 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 8 Sayı: 2
  • Basım Tarihi: 2008
  • Doi Numarası: 10.1166/jnn.2008.a265
  • Dergi Adı: JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.619-622
  • Anahtar Kelimeler: Scanning Hall Probe Microscopy, quartz crystal, AFM, FORCE MICROSCOPE, SENSORS
  • Orta Doğu Teknik Üniversitesi Adresli: Hayır

Özet

Scanning Hall Probe Microscopy (SHPM) is a quantitative and non-invasive technique for imaging localized surface magnetic field fluctuations such as ferromagnetic domains with high spatial and magnetic field resolution of similar to 50 nm and 7 mG/Hz(1/2) at room temperature. In the SHPM technique, scanning tunneling microscope (STM) or atomic force microscope (AFM) feedback is used to keep the Hall sensor in close proximity of the sample surface. However, STM tracking SHPM requires conductive samples; therefore the insulating substrates have to be coated with a thin layer of gold. This constraint can be eliminated with the AFM feedback using sophisticated Hall probes that are integrated with AFM cantilevers. However it is very difficult to micro fabricate these sensors. In this work, we have eliminated the difficulty in the cantilever-Hall probe integration process, just by gluing a Hall Probe chip to a quartz crystal tuning fork force sensor. The Hall sensor chip is simply glued at the end of a 32.768 kHz or 100 kHz Quartz crystal, which is used as force sensor. An LT-SHPM system is used to scan the samples. The sensor assembly is dithered at the resonance frequency using a digital Phase Locked Loop circuit and frequency shifts are used for AFM tracking. SHPM electronics is modified to detect AFM topography and the frequency shift, along with the magnetic field image. Magnetic domains and topography of an Iron Garnet thin film crystal, NdFeB demagnetised magnet and hard disk samples are presented at room temperature. The performance is found to be comparable with the SHPM using STM feedback.