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• Gökçe Karataş 2005 Education Award for his accomplisments in the field of Informatics

• Silver Medal at 16th International Olympiad in Informatics, Athens, Greece, 11-18 Septem-

ber 2004

• Silver Medal at 12th Balkan Olympiad in Informatics, Plovdiv, Bulgaria, 3-9 July 2004

• Gold Medal at 11th National Olympiad in Informatics, Ankara, Turkey, December 2003

• Bronze Medal at 15th International Olympiad in Informatics, Wisconsin, USA, 16-23

August 2003

• Bronze Medal at 11th Balkan Olympiad in Informatics, Iai, Romania, 14-20 July 2003

• Silver Medal at 10th National Olympiad in Informatics, Ankara, Turkey, December 2002

• 5th Place in 2001 Turkish National High School Exam among 560.000 students

viii



Fields of Study

Major Field: Computational Geometry

Studies in Computational Geometry with Professor Subhash Suri

ix



Abstract

Computing Volumes and Convex Hulls:
Variations and Extensions

Hakan Yıldız

Geometric techniques are frequently utilized to analyze and reason about multi-

dimensional data. When confronted with large quantities of such data, simplifying ge-

ometric statistics or summaries are often a necessary first step. In this thesis, we make

contributions to two such fundamental concepts of computational geometry: Klee’s

Measure and Convex Hulls. The former is concerned with computing the total vol-

ume occupied by a set of overlapping rectangular boxes in d-dimensional space, while

the latter is concerned with identifying extreme vertices in a multi-dimensional set

of points. Both problems are frequently used to analyze optimal solutions to multi-

objective optimization problems: a variant of Klee’s problem called the Hypervolume

Indicator gives a quantitative measure for the quality of a discrete Pareto Optimal set,

while the Convex Hull represents the subset of solutions that are optimal with respect

to at least one linear optimization function.

In the first part of the thesis, we investigate several practical and natural variations

of Klee’s Measure Problem. We develop a specialized algorithm for a specific case of

Klee’s problem called the “grounded” case, which also solves the Hypervolume Indi-

cator problem faster than any earlier solution for certain dimensions. Next, we extend

x



Klee’s problem to an uncertainty setting where the existence of the input boxes are

defined probabilistically, and study computing the expectation of the volume. Addi-

tionally, we develop efficient algorithms for a discrete version of the problem, where

the volume of a box is redefined to be the cardinality of its overlap with a given point

set.

The second part of the thesis investigates the convex hull problem on uncertain

input. To this extent, we examine two probabilistic uncertainty models for point sets.

The first model incorporates uncertainty in the existence of the input points. The second

model extends the first one by incorporating locational uncertainty. For both models,

we study the problem of computing the probability that a given point is contained in the

convex hull of the uncertain points. We also consider the problem of finding the most

likely convex hull, i.e., the mode of the convex hull random variable.

xi



Table of Contents

Acknowledgements iv

Curriculum Vitæ vi

Abstract x

Table of Contents xii

List of Figures xv

Introduction 1

1 Computing Klee’s Measure of Grounded Boxes 12
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Klee’s Measure Problem . . . . . . . . . . . . . . . . . . . . 13
1.1.2 Problem and Results . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Dimension Reduction: Sweeping and Weighting . . . . . . . . . . . 18
1.3 Weighted Volume of Halfspaces: the Planar Case . . . . . . . . . . . 23

1.3.1 Vertical and Horizontal Gradients . . . . . . . . . . . . . . . 24
1.3.2 Intersecting Gradient Volumes via Partial Sums . . . . . . . . 27

1.4 Multidimensional Weighted Volume . . . . . . . . . . . . . . . . . . 29
1.4.1 Intersecting the Gradients . . . . . . . . . . . . . . . . . . . 31
1.4.2 Maintaining the Sum of Ordered Products . . . . . . . . . . . 34
1.4.3 Higher Order Partial Sums and Sum of Ordered Products . . . 38

1.5 Dynamic Weighted Volume For Arbitrary Boxes . . . . . . . . . . . 40
1.5.1 The Planar Case . . . . . . . . . . . . . . . . . . . . . . . . 41
1.5.2 The d-dimensional Case . . . . . . . . . . . . . . . . . . . . 48
1.5.3 Weighted Volume of Axis-parallel Strips . . . . . . . . . . . 51

xii



1.6 Klee’s Measure for d-Grounded Boxes . . . . . . . . . . . . . . . . . 54
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2 The Union of Uncertain Boxes 57
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.2 Probabilistic Volume: Expectation and Tail Bounds . . . . . . . . . . 60
2.3 Maintaining the Expected Measure in 1D . . . . . . . . . . . . . . . 62

2.3.1 Anonymous Segment Tree . . . . . . . . . . . . . . . . . . . 63
2.3.2 An Abstract Anonymous Segment Tree . . . . . . . . . . . . 70
2.3.3 Measure of Probabilistic Segments . . . . . . . . . . . . . . 72

2.4 Dynamic Expected Volume in d Dimensions . . . . . . . . . . . . . . 74
2.4.1 The Trellis Structure . . . . . . . . . . . . . . . . . . . . . . 75
2.4.2 Overmars-Yap Partition . . . . . . . . . . . . . . . . . . . . 77
2.4.3 Dynamic Partition . . . . . . . . . . . . . . . . . . . . . . . 80

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3 A Discrete and Dynamic Version of Klee’s Measure Problem 90
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.2 Maintaining the Discrete Measure . . . . . . . . . . . . . . . . . . . 94

3.2.1 Invariants for Stabbing and Measure . . . . . . . . . . . . . . 95
3.2.2 The Measure Tree and Dynamic Updates . . . . . . . . . . . 99
3.2.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . 104
3.2.4 Extension to Higher Dimensions . . . . . . . . . . . . . . . 107
3.2.5 Further Improvements . . . . . . . . . . . . . . . . . . . . . 111

3.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
3.3.1 Reporting Queries . . . . . . . . . . . . . . . . . . . . . . . 112
3.3.2 Uncertain Discrete Measure . . . . . . . . . . . . . . . . . . 117

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4 Convex Hulls under Uncertainty: Membership Probability 122
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.2 Membership Probability in the Plane . . . . . . . . . . . . . . . . . . 127

4.2.1 The Unipoint Model . . . . . . . . . . . . . . . . . . . . . . 127
4.2.2 The Multipoint Model . . . . . . . . . . . . . . . . . . . . . 130
4.2.3 Dealing with Degeneracies . . . . . . . . . . . . . . . . . . 134

4.3 Membership Probability in d Dimensions . . . . . . . . . . . . . . . 136
4.3.1 The Unipoint Model . . . . . . . . . . . . . . . . . . . . . . 137
4.3.2 The Multipoint Model . . . . . . . . . . . . . . . . . . . . . 142

4.4 The Probability Map . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4.4.1 Computing the Probability Map in the Plane . . . . . . . . . 147

xiii



4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5 The Most Likely Convex Hull of Uncertain Points 154
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.2 Two-Dimensional Most Likely Hull in the Unipoint Model . . . . . . 158

5.2.1 Likelihood Contributions of Edges . . . . . . . . . . . . . . 160
5.2.2 The Dynamic Programming Algorithm . . . . . . . . . . . . 164

5.3 Hardness of the 3-Dimensional Most Likely Hull . . . . . . . . . . . 167
5.3.1 The Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 169
5.3.2 Inapproximability . . . . . . . . . . . . . . . . . . . . . . . 173

5.4 Most Likely Hull in the Multipoint Model . . . . . . . . . . . . . . . 178
5.4.1 The Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 180

5.5 Extensions and Concluding Remarks . . . . . . . . . . . . . . . . . 185

Conclusion 187

Bibliography 190

xiv



List of Figures

0.1 An instance of Klee’s Measure Problem in two dimensions. . . . . . . 3
0.2 (a) The area dominated by a set of points in the positive quadrant of the
plane. (b) The dominated area shown as a union of axis-aligned rectangles. . 5
0.3 Convex hull of a set of points in two dimensions. . . . . . . . . . . . 6
0.4 An arrangement of boxes and points in two dimensions. The discrete
volume of the union of boxes with respect to the point set is 4. . . . . . . . 10
1.1 A set of three boxes in 3-space are shown in (a). The coordinate axes
are labeled as x1, x2 and x3. These boxes are 2-grounded because when they
are projected to the 2-dimensional space formed by axes x1 and x2 (as shown
in (b)), they share a common bottom-left corner, which is the origin. . . . . 15
1.2 (a) A set of 3 boxes B1, B2, B3 in 3-space, grounded with respect to
the x3 axis, and (b) their 2-dimensional weighted projections. . . . . . . . . 21
1.3 (a) Illustrating the gradient structures. The vertical gradient has three
strips, with weights in descending order w7 > w4 > w1, and widths 3, 2.8
and 3, respectively. (b) The array representation of the two gradients shown
in (a). The halfplane H5 is either not inserted yet or covered by halfplanes
with higher weights, and so its array entries are zero. (c) Illustrating the
“intersection” of the two gradients. The “light gray” (resp., “dark gray”)
section shows the portion where the weight of the vertical (resp., horizontal)
gradient dominates. Recall that the halfplane with larger index has higher
weight than the one with smaller index. . . . . . . . . . . . . . . . . . . . 23
1.4 (a) A three-dimensional halfspace arrangement forming three gradients
G1, G2 and G3. (b) The ith strip on G1 (light gray) and the portion of its
volume claimed by gradients G2 and G3 (areas with darker gray). . . . . . . 31
1.5 An arrangement of axis-parallel strips inside a rectangular region in
two dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.6 (a) An example partition. (b) Its binary space partition tree. . . . . . . 42

xv



1.7 (a) A set of boxes stored in the partition tree. Box with larger index
has higher weight. (b) The tree after inserting an entry for box B3. All lower
weight entries below the inserted entry are deleted. . . . . . . . . . . . . . 46
1.8 (a) A two-dimensional arrangement of four strips with weights in de-
scending order w4 > w3 > w2 > w1. Notice the intersection between the
strips with weights w1 and w3, where the strip with weight w3 dominates. (b)
The array representation of the strips. (c) Illustrating the intersection of the
strips. The “light gray” (resp.,“dark gray”) section shows the portion where
the weights of the vertical (resp., horizontal) strips dominate. . . . . . . . . 52
2.1 (a) An anonymous segment tree, positive ccover values are shown. (b)
the push-up operation, ci’s stand for ccover values. . . . . . . . . . . . . . 66
2.2 A key insertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.3 A rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.4 The deletion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.5 (a) A two-dimensional trellis formed by 5 boxes. (b) The shape with
the same area formed by moving strips. . . . . . . . . . . . . . . . . . . . 75
3.4 The push-up operation on a node with two children. . . . . . . . . . . 98
3.5 A measure tree of 9 points on the plane. . . . . . . . . . . . . . . . . 100
3.6 Push-down in a merge. . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.1 (a) A witness edge. (b) Sites in radial order around q. (c) The set Wi. 129
4.2 (a) An outcome with two possible witness edges, each shown by a gray
arrow. (b) An outcome where there is a witness edge but q is not a vertex of
conv(A ∪ {q}). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.3 (a) The ray −→r (s′i, q

′). (b) A si-escaping facet f for q on C. . . . . . . 138
4.4 The cross-section of the space on the plane defined by the dth coordi-
nate axis and the line supporting −→r (s′i, q

′). . . . . . . . . . . . . . . . . . 139
4.5 A facet fj projected to the orthogonal complement plane. . . . . . . . 141
4.6 A set of uncertain points in the unipoint model and the corresponding
probability map. The existence probability of each point is shown above
it. In the map, the higher the color intensity, the higher the membership
probability is. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.7 The cases to consider for computing the probability of F ′ from F . . . 148
4.8 The cases to consider for computing the probability of e from F . . . . 150
5.1 Illustrations for the two-dimensional most likely hull in the unipoint
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
5.2 Triangulating Rj

i inside the bounding box of S. The black circles are
the sites in S. The black squares the points in U and V . . . . . . . . . . . . 164
5.3 Wedge for T (sisj). . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.4 Lemma 5.3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

xvi



5.5 Lift to P1 and P2 (vertically scaled). . . . . . . . . . . . . . . . . . . 171
5.6 (a) Anchors (black squares) and spikes (gray circles) on the unit circle.
(b) Construction of tv. (c) The three points constructed for clause u. . . . . 181

xvii



Introduction

Geometry, “the science of shapes”, has an essential place in mathematics. Many

subfields of mathematics are, directly or indirectly, involved with geometry. One might

even argue that mathematics is mostly geometry itself, considering that a real number

can be represented as a point on the number line. Inevitably, the field of algorithms,

which can be viewed (to some extent) as the mathematics of computer science, has

studied many problems dealing with geometry. In 1970s, the scientists who study such

problems started to use the term “Computational Geometry” to categorize their work.

Today, Computational Geometry is a widely recognized subfield of algorithms, with

applications in many subdisciplines of computer science including but not limited to

computer graphics, computer-aided design, databases, geographical information sys-

tems, machine learning and robotics.

A good deal of applications in computer science, including many in computational

geometry, require computing statistics or simplifications of the data at hand, either as

part of their main intent or in order to improve efficiency. As an example that relates

1



Introduction

to geometry, one can consider certain collision detection algorithms used in computer

graphics, which replace complicated objects (e.g., 3D meshes) with simpler shapes

such as bounding boxes or enclosing spheres. In some cases, the sought statistic may

even be as simple as a single number. For instance, (following the earlier example in

computer graphics) one may want to compute the volume of a 3D mesh (which is a

single number) in order to assign it a weight proportional to its volume and then make

physical computations on it.

In this dissertation, we make contributions to computing two such statistics from

geometry: volumes and convex hulls. Both computing volumes and computing convex

hulls are operations that are frequently utilized in practice to simplify or summarize

geometric data. As a result, computational geometers have studied both problems in

various forms for decades, publishing a large amount of related work. This dissertation

studies algorithms for computing these two statistics on various scenarios. The results

that we present either improve the best results on old problems or provide non-trivial

solutions for novel variations of these problems. Before we elaborate on the content of

the dissertation, we give some brief information about computing volumes and convex

hulls.

Volumes: Going back to the basics, the volume of an object is the amount of space it

occupies. While the word “volume” normally refers to a measure of three-dimensional

space, the concept applies in any number of dimensions. The one-dimensional vol-

2



Introduction

  
Figure 0.1: An instance of Klee’s Measure Problem in two dimensions.

ume is called the length whereas the two-dimensional volume is called the area. In

mathematical terminology, volume for dimensions higher than three is referred as hy-

pervolume. In this dissertation, we use the term “volume” to refer to volume in any

dimension, including length, area, three-dimensional volume and hypervolume.

Calculating volumes is one of the core operations in geometry, with countless ap-

plications in science and engineering. As a result, there is a significant amount of work

in computational geometry literature that addresses computing volumes. Since it is

straightforward to compute the volume of most simple shapes (e.g. triangles, ellipses,

spheres, etc.), the focus of this work has been on collections of shapes or shapes with

arbitrary descriptive complexity. Some of the studied problems involve computing the

volume of a “union” of shapes (e.g., [5,8,56,69]). In this dissertation, we mainly work

on a specific problem in this class called Klee’s Measure Problem, which is named af-

ter the famous mathematician Victor Klee. In this problem, one wants to compute the

volume of a union of axis-aligned boxes in d-dimensional space, where d could be any

3
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positive integer. In the two-dimensional special case of the problem (where d = 2),

the aim is to compute the area covered by a union of axis-aligned rectangles. (See

Figure 0.1.)

Despite that the main motivation for studying Klee’s problem is theoretical, the

problem is also useful in some practical scenarios. One well-known example is the

hypervolume indicator, whose motivation comes from the field of multi-objective op-

timization [39, 48]. Conceptually, a feasible solution to a multi-objective optimization

problem with d objectives is a point with positive coordinates in d-dimensional space,

where its coordinates represent its evaluation with respect to the d objectives. Ideally,

the goal of a multi-objective optimization algorithm is to produce the set of Pareto Op-

timal solutions: no point in the solution set is dominated by another point representing

a feasible solution.1 In many cases, however, only an approximate set is obtainable due

to efficiency or feasibility reasons. The hypervolume indicator is a scalar measure used

to evaluate how close an approximate solution set is to the true Pareto Optimal set. The

indicator is simply equal to the volume in the positive orthant that is the dominated

by the points in the approximate set. See Figure 0.2a for a two-dimensional example.

Computing the hypervolume indicator can be seen as a special case of Klee’s problem.

In particular, the hypervolume indicator of n points, is equivalent to the volume of a

1A point p dominates another point q if all of p is larger than q on all coordinates.

4
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(a)

  
(b)

Figure 0.2: (a) The area dominated by a set of points in the positive quadrant of the
plane. (b) The dominated area shown as a union of axis-aligned rectangles.

union of n boxes, where all boxes have one of the corners located on the origin. (See

Figure 0.2b.)

Although Klee’s Measure Problem has a long history in computational geometry

(dating back to 1977 [56]), the only (unconditional) lower bound known for the problem

is Ω(n log n) for all dimensions, where n is the number of boxes in the input. The

problem can be solved in optimal O(n log n) time for d = 1, 2 [12] and O(nd/2) time

for d ≥ 3 [24], where n is the number of boxes. For the hypervolume indicator problem,

faster specialized algorithms exist.

Convex Hulls: The second geometric concept that we study in this dissertation is

a structure known as the convex hull. Given a set of points in d-space (for any positive

integer d), their convex hull is the smallest convex set that contains all the points. If

the points are given in the plane (i.e., d = 2), their convex hull would be the smallest

convex polygon containing all of the points. (See Figure 0.3.)

5



Introduction

  
Figure 0.3: Convex hull of a set of points in two dimensions.

The convex hull is a fundamental structure in mathematics and computational ge-

ometry, with applications in a variety of areas including but not limited to computer

graphics, image processing, pattern recognition and statistics. For instance, in computer

graphics, convex hulls provide a more accurate simplification of 3D meshes compared

to bounding boxes and can be used to accelerate collision detection in certain scenarios.

Convex hulls are also frequently utilized when dealing with optimization problems.

The vertices of the convex hull represent a “Linear Optimization Pareto Front” among

the input point set: each vertex is a point that is optimal with respect to at least one

linear optimization function. Convex hulls also allow efficient queries of these optimal

points for given linear optimization functions.

Owing to their importance in practice, the algorithms for computing convex hulls

are well-studied and optimal worst-case algorithms have been discovered for all di-

mensions. The convex hull of a set of n points can be computed in O(n log n) time for

6
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d = 2, 3 [46, 65] and O(nbd/2c) for d > 3 [25]. There also exist faster output-sensitive

algorithms [21, 26, 55, 61, 67].

Contribution of the Dissertation

In this dissertation, we present new results on computing volumes and convex hulls.

In particular, we study several interesting and practical problems involving volumes and

convex hulls and either solve these problems with novel algorithms or prove hardness

results on them. Most of the problems that we consider are variations or extensions

of Klee’s Measure and Convex Hull problems. To the best of our knowledge, we are

the first to study these variations/extensions. We also study a special case of Klee’s

Measure Problem. In that case, our results imply a faster solution compared to earlier

(more general) solutions.

We emphasize that the problem variations we work on are not arbitrarily chosen. In

addition to that we study theoretically interesting and (potentially) practical problems,

it is worth to point out two aspects of our work. First, all of the problems are stud-

ied for an arbitrary number dimensions of Euclidean space. In other words, we do not

limit our solution techniques to two and three dimensions where the data is easily “vi-

sualizable”, but instead develop solutions that extends to higher dimensions whenever

possible. Such high-dimensional geometric techniques are frequently utilized in prac-
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tice, especially in areas such as databases, machine learning and data mining. Thus,

our techniques have potential applications in these fields.

The second major aspect of our work is that most of our problems focus on or can

be extended to involve uncertainties in input. In many practical scenarios, the data of

concern may be subject to uncertainties. For instance, if the data is collected by a sensor

device, there may be measurement errors. In some cases, the uncertainty is intention-

ally introduced by perturbing data (e.g., data anonymization for privacy protection).

Depending on the cause of the uncertainty, it may be possible to model it probabilisti-

cally. For instance, one can gather statistical information from past certain data to infer

a probability distribution on the uncertain data. It may also be possible infer such a

distribution directly from the process generating the data. If such probabilistic infor-

mation is available, then one can extract more meaningful information about the effects

of uncertainties on the output.

To better understand the nature of our work on uncertain data, consider the follow-

ing example on the convex hull problem. Suppose that we are given a set of points in the

plane, but we are uncertain about the existence of each point and only know it proba-

bilistically. In particular, assume that each point is assigned an independent probability

of existence. That is, we know, for each point p, the likelihood that p really exists.

Under these conditions, the convex hull becomes a random variable. It is then possible

8
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to analyze various statistics of the convex hull. For instance, what is the expected area

of the convex hull? One can also ask for the most likely convex hull of the points.

Organization of Chapters

The dissertation consists of two main parts (Chapters 1-3 and Chapters 4-5). In

Chapters 1 to 3, we study variations of Klee’s Measure Problem. In Chapters 4 and 5,

we study convex hulls under uncertainty. We now give detailed information about the

content of our chapters.

In Chapter 1, we study a special case of Klee’s problem called the “grounded”

case. Given a set of boxes in d-space, we say that the boxes are k-grounded, if all

boxes have a common corner point when they are projected to a particular subset of k

dimensions (1 ≤ k ≤ d). Based on this definition, the hypervolume indicator prob-

lem is the d-grounded case of Klee’s Measure Problem. We show that if the boxes

are k-grounded for any k ≥ 2, then the volume of their union can be computed in

O(n(d−1)/2 log2 n) time, which is roughly
√
n faster than the general upper bound of

O(nd/2). Our algorithm also solves the hypervolume indicator problem faster than any

previously published algorithm for dimensions d = 4, 5, 6.

In Chapter 2, we study Klee’s Measure Problem on uncertain boxes. In particular,

we examine the problem of computing volume in the case where each box is known

to exist with an independent probability. In this setting, we describe a data structure

9
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Figure 0.4: An arrangement of boxes and points in two dimensions. The discrete
volume of the union of boxes with respect to the point set is 4.

that can maintain the expected volume as the set of boxes undergoes insertions and

deletions. The data structure has constant query time and an amortized update time of

O(n(d−1)/2 log n). Surprisingly, we also show that querying the probability distribution

of the volume for a specific value is an NP-hard problem despite that the expected

volume can be computed in polynomial time.

Chapter 3 examines a discrete version of Klee’s Measure Problem. In this version,

we redefine the volume of each box to be the number of points it contains from a

given point set. Then, the volume of a union of boxes is simply the number points that

are contained by at least one box. (See Figure 0.4 for a two-dimensional example.)

The discrete measure problem have natural applications in areas that deal with multi-

attribute data. For instance, in databases, it can be used to compute the number of

records that satisfy a disjunction of ranges queries. As our solution to this problem, we

describe a dynamic data structure that can maintain the discrete volume of a set of boxes

with respect to a set of points, as both sets undergo modifications. This structure has

10
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constant query and sublinear update times. We also extend our result to a probabilistic

setting.

In Chapter 4, we present our first set of results for the convex hull problem under

uncertainty. Our results are based on two probabilistic uncertainty models. In the first

model, the uncertainty is existential only. In particular, each point has a fixed position

but exists with an independent probability. In the second model, we also incorporate

locational uncertainty and allow each point to appear in a number different positions

based on a probability distribution. For both settings, we examine the problem of find-

ing the probability that a given point is contained in the convex hull and solve it with

polynomial algorithms. We also describe a data structure that can efficiently report the

probability that a given query point is included in the convex hull of a set of uncertain

points in two dimensions.

Chapter 5 considers the problem computing the “most likely convex hull”, the mode

of the convex hull variable, based on the same uncertainty models from Chapter 4. The

most likely convex hull can be utilized in practice as an estimator for the random convex

hull variable. We show that the most likely hull of a set of n uncertain points can be

computed in O(n3) if the points are in two-dimensional space and their uncertainties

are existential only. For dimensions higher than two or in the presence of locational

uncertainty, we prove that computing the most likely hull is an NP-hard problem and

also show an inapproximability result.

11



Chapter 1

Computing Klee’s Measure of

Grounded Boxes∗

1.1 Introduction

In this chapter, we study algorithms for computing the volume of a union of axis-

aligned boxes, for a special case that we call “grounded boxes”. As mentioned before,

computing the volume of a union of boxes is known as Klee’s Measure Problem. Since

our problem is a special case of Klee’s Measure Problem, we first give some brief

information about Klee’s problem before we elaborate on our problem and results.

∗This chapter is based on a joint work with Subhash Suri and parts of this chapter appeared in
the following publications: [80] (Published and copyright held by ACM. The definitive version avail-
able at http://doi.acm.org/10.1145/2261250.2261267.) [81] (Published and copyright
held by Springer. The final publication available at http://link.springer.com/10.1007/
s00453-013-9797-9.)
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Chapter 1. Computing Klee’s Measure of Grounded Boxes

1.1.1 Klee’s Measure Problem

Klee’s Measure Problem is a classical problem in computational geometry, dating

back to the 1970s: Given a set of n axis-aligned boxes in d-space, compute the volume

of their union. In the two-dimensional special case of the problem (where d = 2),

the problem asks for the area of a union of axis-aligned rectangles. Similarly, in three

dimensions, the aim is to compute the volume of a union of axis-aligned rectangular

prisms.

In the literature, this problem was first studied by Victor Klee in 1977 [56] in its

one-dimensional form and hence is named after him. Klee described how to compute

the length of a union of n segments on the number line in O(n log n) time and pointed

out that the problem extends to dimensions higher than one. The first non-trivial so-

lution for higher dimensions, with running time O(nd−1 log n), was given by Bentley

using his space-sweep approach [12], which was quickly improved to O(nd−1) time by

van Leeuwen and Wood [76]. Several years later, Overmars and Yap [64] made a break-

through and achieved the bound of O(nd/2 log n), which essentially remains unbeaten

more than 20 years later. All improvements to this bound during these intervening years

have come in the form of reducing the log factor [23, 24]. Today, the best upper-bound

for Klee’s problem is O(n log n) for d = 1, 2 [12] and O(nd/2) for d ≥ 3 [24].

The only lower bound known for the problem is Ω(n log n) for all dimensions, in

the linear decision tree model [41]. This is quite unsatisfactory, especially considering
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that there is a big cap between the upper and lower bounds in high dimensions. On

the other hand, the problem is known to be #P -hard when the dimension is part of

the input [17], so the exponential dependence on the dimension seems unavoidable for

an algorithm with running time polynomial in n. In fact, the problem has also been

shown to be W [1]-hard [23], meaning that it is unlikely (based on commonly accepted

conjectures) that an algorithm with time complexityO(f(d)×P (n)) exists, where f(d)

is a function of d and P (n) is a polynomial of n independent of d.

Since beating theO(nd/2) bound proved to be difficult task over the years, scientists

have also studied special cases of Klee’s problem, with hopes to get better bounds.

The most well-studied special cases are the ones where the boxes are in the form of

hypercubes [2, 5, 15, 22, 24, 31]. For d ≥ 4, the best bound for computing the volume

of a union of hypercubes is O(n(d+1)/3 polylog n), which can further be improved to

O(nd/3 polylog n) if the hypercubes have unit size [24]. Notice that this is significantly

better than the general O(nd/2) bound. For d ≤ 3, it is possible to solve the hypercube

problem in O(n polylog n) time [2].

Another well-studied special case of Klee’s problem is known as the hypervol-

ume indicator, which is a metric frequently used in multi-objective optimization and

evolutionary computing [39, 48, 83]. In this special case, all boxes have one of their

corners located on the origin and extend towards the positive orthant. This special

case can be reduced to Klee’s problem on unit hypercubes and therefore be solved in
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x3

x2

x1

x2

x1

(a) (b)

1
Figure 1.1: A set of three boxes in 3-space are shown in (a). The coordinate axes are
labeled as x1, x2 and x3. These boxes are 2-grounded because when they are projected
to the 2-dimensional space formed by axes x1 and x2 (as shown in (b)), they share a
common bottom-left corner, which is the origin.

O(nd/3 polylog n) for d ≥ 4. For smaller dimensions, algorithms with O(n log n) run-

ning time exist [14, 40].

Finally, there also exist some work on streaming and space-efficient algorithms for

Klee’s Measure Problem [27, 68, 71].

1.1.2 Problem and Results

The main contribution of this chapter is a new result for computing Klee’s measure

under the assumption that a 2-dimensional orthogonal projection of all the boxes has a

common corner. We call such a collection of boxes 2-grounded. (See Figure 1.1 for an

example.) When the boxes share a common corner in a k-dimensional projection, for

1 ≤ k ≤ d, we call the set k-grounded. Naturally, the algorithm for 2-grounded boxes

work trivially for k-grounded, where k ≥ 2.
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Besides their intrinsic theoretical interest as a special case of the general Klee’s

problem, the k-grounded boxes also arise frequently in applications when some of the

coordinate axes have a natural “start” or “end” position for ranges. For instance, if one

of the axes represents time recording the duration of some event, then the origin marks

the natural start point, and therefore a source of grounding on that axis. Similarly, in

sensor databases, physical attributes such as temperature, humidity etc. naturally have

a common “lower bound,” and the measured quantity is really the deviation from this

“grounded” value. In these cases, as long as two or more dimensions are grounded, our

algorithm leads to an improved bound for computing the volume of the union.

Our main result is an O(n(d−1)/2 log2 n) time algorithm for computing Klee’s mea-

sure for a set of n 2-grounded boxes. This is an improvement of roughly O(
√
n)

compared to the fastest solution of the general problem. Recently, it has been shown

that breaking the bound O(n(d−1)/2) for 2-grounded boxes would imply a breakthrough

for the general Klee’s problem [16]. Assuming the correctness of the conjecture that

Ω(nd/2) is the right lower bound for Klee’s problem, our algorithm is optimal for 2-

grounded boxes, with the exception of its logarithmic factors.

If the boxes are d-grounded, namely they all share a common corner (without any

projection), the time complexity of our algorithm is further improved by a log n factor.

Recall that the hypervolume indicator problem deals with boxes with a common corner

(i.e., they are d-grounded), so our algorithm also works for computing the hypervol-
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ume indicator. We note that our algorithm is asymptotically faster than any previously

published hypervolume indicator algorithm for dimensions 4, 5 and 6.

At the high level, our algorithm has the following general form. We transform the d-

dimensional problem into one of maintaining its (d−1)-dimensional cross-section with

a sweeping plane. The sweeping is a standard step used in algorithms for the Klee’s

measure, but instead of solving the cross-section problem directly in (d− 1)-space, we

exploit the grounding property and transform the problem into a (d − 2)-dimensional

weighted volume problem. In this problem, each box has a non-negative weight and, in

computing the volume, the contribution of each point in space equals the weight of the

heaviest box containing it. Solving the weighted volume problem efficiently is the main

result of this chapter. In particular, we show that the d-dimensional weighted volume

can be maintained under insertions at the amortized cost of O(n(d−1)/2 log2 n), which

results in an O(n(d−1)/2 log2 n) time algorithm for the d-dimensional Klee’s Measure

Problem on 2-grounded boxes. In solving the weighted volume problem, we also in-

troduce and solve a combinatorial problem of maintaining the sum of ordered products,

which may be of independent interest.

Chapter Organization

The chapter is organized in seven sections. In Section 1.2, we explain how to re-

duce the d-dimensional problem to a (d − 2)-dimensional weighted volume problem.
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In Sections 1.3 and 1.4, we solve a special case of the weighted volume involving half-

spaces, which turns out to be the key problem. In Section 1.5, we show how the general

weighted problem can be solved based on the solution of the halfspace problem. In Sec-

tion 1.6, we briefly mention our results for the hypervolume indicator. In Section 1.7,

we conclude with a summary and discussion.

1.2 Dimension Reduction: Sweeping and Weighting

The classical approach of Overmars and Yap [64] solves the d-dimensional Klee’s

Measure Problem by reducing it to a dynamic (d − 1)-dimensional problem. Our key

idea is to reduce the d-dimensional problem to a (d− 2)-dimensional weighted volume

problem with insert-only updates. We reduce one dimension by plane sweep (a standard

technique used in previous algorithms for Klee’s Measure [12,23,64,76]), and another

by converting the unweighted problem to a weighted problem. We begin with the high

level ideas behind the plane sweep, and the weighting.

Reducing a Dimension by Plane Sweep: We first briefly introduce some formal

definitions. A d-dimensional axis-aligned box B is the Cartesian product of d one-

dimensional ranges, namely, B = Πd
i=1(ai, bi). The volume of a box B is vol(B) =

Πd
i=1|bi − ai|. Given a set B of boxes {B1, B2, . . . , Bn}, its union

⋃
Bi is the set of

points contained in at least one box of B.
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Consider a set of axis-aligned boxes B = {B1, . . . , Bn} in d-space, for which we

want to compute the volume of their union. Without loss of generality, we assume that

all the boxes are contained in the positive orthant Rd
+—otherwise, we can divide the

problem into 2d groups, one for each orthant. We say that a box B is grounded with

respect to dimension k if B’s extent along the kth dimension has the form (0, Bk),

where Bk > 0 is the length of B along dimension k. Supposing that all boxes in B are

grounded with respect to dimension d, we can compute the volume of their union as

follows. We sort the boxes in B in the descending order of their dth coordinate. Without

loss of generality, let the resulting order be B1, B2, . . . , Bn, meaning that Bd
1 > Bd

2 >

· · · > Bd
n > 0. We further set Bd

n+1 = 0. Then, it is easy to see that the total volume

covered by B is given by the formula

n∑
i=1

Vi,d−1 × (Bd
i −Bd

i+1),

where Vi,d−1 is the volume of the set {B1, . . . , Bi} projected onto the plane xd = 0.2

This is easily seen by visualizing a plane parallel to the plane xd = 0, sweeping the

space from Bd
1 to Bd

n+1 = 0, and by observing that the intersection of this plane with

the boxes of B is constant between two consecutive coordinates in the sorted list, de-

termined entirely by the boxes that precede Bi. If we write Vi,d−1 for the (d − 1)-

2xd denotes the dth coordinate of point x.
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dimensional volume of this intersection, then the d-dimensional volume that lies be-

tween Bd
i and Bd

i+1 is precisely Vi,d−1 × (Bd
i −Bd

i+1).

The (d − 1)-dimensional slice changes only when the sweeping plane encounters

a new box Bi, and thus we can compute the d-dimensional volume of n boxes by

maintaining the (d−1)-dimensional volume of their projections subject to n insert-only

updates. If the amortized update and query cost is O(F (n)), then the d-dimensional

problem can be solved in time O(nF (n)) plus the preprocessing cost including the

initial sorting.

Reducing a Dimension by Weighting: Another conceptual way to reduce the di-

mension of the volume problem is the following. Assuming again that the boxes of B

are grounded with respect to the dth dimension, we orthogonally project each box Bi in

B onto the plane xd = 0, obtaining a (d− 1)-dimensional box, denoted B′i, and assign

a weight w(B′i) = Bd
i to this projected box. The weighted volume of B′i is defined

as w(B′i) times the (ordinary, (d − 1)-dimensional) volume of B′i. See Figure 1.2 for

illustration.

This transformation converts the set B into a set B′ = {B′1, B′2, . . . , B′n} of (d− 1)-

dimensional weighted boxes. For each point x ∈ Rd−1
+ on the plane xd = 0, assign to

it the weight of the heaviest box containing x. That is,

w(x) = max{w(B′i) | x ∈ B′i}
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Figure 1.2: (a) A set of 3 boxes B1, B2, B3 in 3-space, grounded with respect to the x3

axis, and (b) their 2-dimensional weighted projections.

Then the volume covered by the boxes in B is given by the integral∫
x∈R(d−1)

w(x) dlx

We call this expression the weighted volume of the union of the set B′. Intuitively, this

expression weights each point x on the projection plane by the maximum height of a

box in B that contains it, thus correctly computing the volume contribution of each box

in B.

Joint Sweep and Weighting for 2-grounded Boxes: Suppose B is a set of boxes,

grounded along dimensions d and d − 1, and that their orthogonal projection onto the

dimensions (d− 1) and d has the origin as the common corner. We can now apply both

of the above dimension-reduction techniques simultaneously, as follows. We sweep the

space along the dth dimension, which requires us to dynamically maintain the (d− 1)-

dimensional volume of the set of boxes intersecting the sweep plane. The updates

are insert only because boxes are only inserted, and never deleted. Depending on that
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the boxes are grounded with respect to (d− 1)th dimension, we maintain the dynamic

(d−1)-dimensional volume by converting it to a weighted (d−2)-dimensional volume.

Thus, the d-dimensional Klee’s Measure Problem is transformed into a (d − 2)-

dimensional problem of maintaining the weighted volume under insertion of boxes.

Solving this problem efficiently is the most essential part of our algorithm, and the

focus of the next three sections. In fact, the crux of the problem proves to be the

following special case:

Under insert-only updates, maintain the weighted volume of a set of axis-
parallel halfspaces.

Our algorithm needs to compute the weighted volume of axis-parallel strips, not

halfspaces. However, the solution is easier to describe for the halfspace case, and gen-

eralizes to strips with minor modifications that incur only an extra log n factor in time

complexity. Therefore, in the next two sections, we focus on halfspaces, and then return

to the weighted volume of arbitrary boxes in Section 1.5. For ease of presentation, we

first describe the halfspace algorithm in two dimensions (Section 1.3), and then its gen-

eralization to higher dimensions (Section 1.4). Section 1.5 describes how to solve the

general weighted volume by combining the halfspaces problem with a space partition

technique.
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i A1[i] A2[i]

1 3 0
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Figure 1.3: (a) Illustrating the gradient structures. The vertical gradient has three strips,
with weights in descending order w7 > w4 > w1, and widths 3, 2.8 and 3, respectively.
(b) The array representation of the two gradients shown in (a). The halfplane H5 is
either not inserted yet or covered by halfplanes with higher weights, and so its array
entries are zero. (c) Illustrating the “intersection” of the two gradients. The “light
gray” (resp., “dark gray”) section shows the portion where the weight of the vertical
(resp., horizontal) gradient dominates. Recall that the halfplane with larger index has
higher weight than the one with smaller index.

1.3 Weighted Volume of Halfspaces: the Planar Case

Consider a setH of n axis-parallel weighted halfplanes in 2-space, each containing

the origin, and a positive orthant axis-aligned rectangle R anchored at the origin. For a

point p inR, define the weight of p with respect to a subsetH′ ⊆ H, denoted w(p,H′),

as the weight of the heaviest halfplane in H′ that contains p; if no such halfplane

exists, then the weight is zero. The weighted volume (area) ofH′ over R is the integral∫
p∈R w(p,H′) dlp. Our goal is to maintain the weighted volume as H′ undergoes

insert-only updates. We will show a data structure with amortized cost of O(log n) per

insertion. The set of axis-aligned halfplanes inH′ is naturally divided into two groups:

vertical and horizontal. The vertical halfplanes have the form {x ∈ R2 | 0 ≤ x1 ≤ a},
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and the horizontal ones have the form {x ∈ R2 | 0 ≤ x2 ≤ b}, where a and b

are arbitrary reals. We maintain the weight distribution imposed by these two classes

separately, and then show how to compute the joint weight implicitly and efficiently.

1.3.1 Vertical and Horizontal Gradients

The intersection of R with a halfplane H is a “strip,” either vertical or horizontal,

containing the origin. Let us focus on the vertical halfplanes of H′, and consider the

partition they induce on R where each point of R is “claimed” by the maximum weight

halfplane containing it. This partition is a sequence of vertical strips in which each strip

belongs entirely to one halfplane, each halfplane contributes at most one strip, and the

strips are ordered in descending weight order from left to right. This follows because

all halfplanes contain the origin, and a larger weight halfplane completely overrides

the smaller weight halfplane to its left. Visually, the resulting structure looks like a

“waterfall”, and for ease of reference, we call it the vertical gradient.3 Similarly, the

horizontal halfplanes, considered in isolation, induce a horizontal gradient of strips

ordered in descending order of weights from bottom to top. (Figure 1.3a shows an

example, where the vertical gradient consists of three strips of respective weights w7 >

w4 > w1, and respective widths 3, 2.8, and 3.)

3This name is inspired by color gradients, which are images with decreasing color intensity in one
direction.
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The gradients give a nice and compact representation of the weight structure im-

posed by the vertical and the horizontal halfplanes separately. In order to compute the

weighted volume of H′ over R, however, we need to intersect the two gradients. An

explicit intersection of two size n gradient structures entails Ω(n2) complexity [64],

and so the key is to perform this intersection implicitly.

Let wi be the weight of the ith halfplaneHi ∈ H, and assume that the halfplanes are

ordered in increasing order of their weights. Without loss of generality, we assume that

the weights wi’s are distinct. We maintain two arrays, A1 and A2, storing the widths

of the strips contributed by vertical and horizontal halfplanes, respectively. Both arrays

have size n, and the ith entry of each corresponds to the halfplane Hi. The entry A1[i]

or A2[i] stores the width of the strip contributed by Hi: if Hi is vertical, it contributes to

A1[i], otherwise to A2[i]. (A halfplane contributes to neither gradient if it is dominated

by heavier halfplanes, in which case both entries are zero.) (See Figure 1.3b for an

illustration.)

Let L1, L2 be the dimensions of the rectangular region R. Then it is easy to see

that
∑

iA1[i] ≤ L1 and
∑

iA2[i] ≤ L2. (The vertical strips whose widths populate A1

are disjoint, and their sum cannot exceed the width of R.) Furthermore, considering

each gradient in isolation, the weighted volume contribution of Hi is precisely equal to

wi × (A1[i] · L2 + A2[i] · L1): this follows because only one of A1[i] or A2[i] can be

non-zero, and so this term is precisely the weighted area of the rectangular strip of Hi.
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The next problem is to determine how much of each gradient is claimed by the other.

We do that in the next subsection, but first let us consider how to maintain the arrays A1

andA2 under insertion of new halfplanes. Consider an update toA1; the horizontal case

A2 is entirely symmetric. When a vertical halfplaneH , with weight w, is to be inserted,

we first determine its rank, namely, the index i for the weight w in the ordered sequence

w1, . . . , wn, which can be done in O(log n) time. Suppose the rank of H is i, namely,

H ≡ Hi. Two changes occur in the gradient structure: (1) some of the vertical strips

that overlap with Hi are deleted—in particular, those with weights less than wi, and (2)

the strip containing the vertical line defining Hi “shrinks” in width. We can locate the

strip to be shrunk in logarithmic time by maintaining a binary search tree on the strips,

keyed by their position, and then appropriately update its array value. Starting with that

strip, we then traverse the list of vertical strips to the left, deleting each strip as long

as their weights are less than wi. These strips are deleted also from the search tree, in

logarithmic time per strip. (We note that once a strip is deleted from the gradient, it

is never reinserted.) We can easily compute the width of the strip produced by Hi and

write this value to A1[i], leading to the following lemma.

Lemma 1.3.1. The arraysA1 andA2 representing the vertical and horizontal gradients

can be updated in O(log n) amortized time after the insertion of a halfplane. The

number of array entries whose values change is O(1) amortized.
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1.3.2 Intersecting Gradient Volumes via Partial Sums

The key problem now is to deduce the correct weighted volume by overlapping the

two gradients. Any point that is covered by both the vertical and the horizontal gradients

should only be counted once, and receive the weight of the heavier halfplane containing

it. In particular, let V1 denote the weighted volume contributed by the vertical gradient:

this is the weighted sum over the points where the vertical halfplanes prevail. Similarly,

V2 is the contribution of the horizontal gradient. We claim that V1 has the following

form:

V1 =
n∑
i=1

(
wi × A1[i]×

(
L2 −

n∑
j=i+1

A2[j]

))

This follows because
∑n

i=1wi ·A1[i]·L2 is the weighted volume without considering the

horizontal gradient, and the subtracted term is precisely what the horizontal gradient

claims away from vertical strips. More precisely, for the halfplane Hi, the portion

claimed by the horizontal gradient involves only those strips whose weight is larger

than wi, and if such a strip has “thickness” A2[j], then the area claimed by the vertical

strip away from Hi is A1[i] · A2[j]. (See Figure 1.3c.) By subtracting the total over

all such horizontal strips leaves the portion that Hi contributes to the final weighted

volume. The complementary term V2 has the similar form:

V2 =
n∑
i=1

(
wi × A2[i]×

(
L1 −

n∑
j=i+1

A1[j]

))
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We need to maintain these weighted volumes under insert-only updates, which we do

by using a dynamic partial sums structure. Recall that the partial sums problem is the

following:

Maintain an array A of size n under an intermixed sequence of update
and query operations, where update(i,∆) changes A[i] to A[i] + ∆, and
query(k) reports the partial sum

∑k
i=1A[i].

Using a balanced binary tree, one can easily support these operations in O(log n)

time each using linear space. The partial sums structure allows us to maintain our

weighted volumes V1 and V2 as the gradient structures change due to insertion of new

halfplanes. In particular, when a halfplane insertion changes A1[i] by ∆, the value V1

changes by

wi ×∆×
(
L2 −

n∑
j=i+1

A2[j]

)

This requires computing the partial sum
∑n

i=j+1A2[j], which is easily done by com-

puting the partial sum query(j), and subtracting it from query(n), in O(log n) time.

On the other hand, if the halfplane H changes the entry A2[j] by ∆, then the change in

V1 is

−
(

∆×
j−1∑
i=1

wi × A1[i]

)

By maintaining a partial sums structure for the array A[i] = wi×A1[i], this update can

also be implemented in logarithmic time. In summary, the disjoint weighted volume
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contributions V1 and V2 of the two gradients can be maintained at the cost of O(log n)

time per update, and we have the following key result.

Theorem 1.3.2. The weighted volume of a set of axis-aligned halfplanes in a rectangle

R can be maintained inO(log n) amortized time per insertion, with a linear-space data

structure.

Proof. We use the array data structure described above, with the total weighted volume

maintained explicitly, so the query time is O(1). By Lemma 1.3.1, inserting a new

hyperplane into the array representations requires O(log n) amortized time, and affects

O(1) array entries. For each affected entry, we update two partial-sum structures (one

each for V1 and V2) and then compute the change in V1 and V2, which suffices to re-

compute the new weighted volume, in O(log n) time via partial-sums queries. Thus,

the total amortized cost of an insertion is O(log n). Finally, all data structures consume

linear space.

1.4 Multidimensional Weighted Volume

In dimension d > 2, the basic idea is the same: we organize the halfspaces in d

independent gradient structures, which can be updated efficiently when a new halfs-

pace is added. The key difference from the two-dimensional problem arises in how we

compute the final weighted volume by intersecting the d gradients structures. Unlike
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the planar case, where we only needed to compute partial sums, the higher dimensional

problems involves a more complex sum of ordered products. We discuss the details of

these sums in the next two subsections, but first let us express the general form of the

d-dimensional gradients.

We have a setH of n axis-parallel weighted halfspaces, each containing the origin,

in d-space. We also have an orthogonal regionR in the positive orthant, anchored at the

origin. We wish to maintain the weighted volume of a subset H′ ⊆ H over R, under

insertions of halfspaces fromH. We maintain d gradient structures, where the jth struc-

ture, denotedGj , is formed by the halfspaces normal to the jth axis, for j = 1, 2, . . . , d.

The gradient Gj consists of strips, in descending weight order, along the positive xj di-

rection. (See Figure 1.4a for a three-dimensional example.) We represent Gj as an

array Aj of size n, where the entry Aj[i] contains the width of the strip contributed by

the halfspace Hi to the gradient Gj , with weight wi. The array indices are arranged in

the increasing weight order of the halfspaces. Each of these d arrays can be maintained

at the amortized cost of O(log n), per insertion of a halfspace, requiring modifications

to a constant (amortized) number of array entries, using the technique of the previous

section.
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Figure 1.4: (a) A three-dimensional halfspace arrangement forming three gradients
G1, G2 and G3. (b) The ith strip on G1 (light gray) and the portion of its volume
claimed by gradients G2 and G3 (areas with darker gray).

1.4.1 Intersecting the Gradients

Let us now consider how to maintain the weighted volume of the current set of

halfspaces H′, given the d gradient arrays. Write the weighted volume as the sum

V1 + · · · + Vd, where Vj is the contribution by Gj to the total volume. We show how

to maintain V1; the others are analogous. In the absence of the other gradients, the

weighted volume induced by a strip in G1 is simply the product of its weight, its width

and the (d−1)-dimensional volume of its projection on the plane x1 = 0. Formally, the

weighted volume of ith strip is wi×A1[i]×∏d
α=2 Lα, where Lα is the length ofR along

the αth coordinate axis. But some of this volume is lost to other gradients because of

their higher weight. In particular, for a nonempty set S = {α1, . . . , αm} ⊆ {2, . . . , d},

let Lossi(S) be the weighted volume of the ith strip in G1 that is claimed by all of the
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gradients in the set {Gα1 , . . . , Gαm}. In other words, Lossi(S) is the intersection of

the weighted volumes (on the ith strip of G1) claimed by the gradients Gα1 , . . . , Gαm .

We can write Lossi(S) as wi × A1[i] times the (d − 1)-dimensional volume on the

plane x1 = 0 that is covered by the intersection of heavier subsections of the gradients

Gα1 , . . . , Gαm . (See the three-dimensional example in Figure 1.4b.) Formally, we write

Lossi(S) = wi × A1[i]×
∏

α∈{2,...,d}\S

Lα ×
∑

i<jα1≤n

Aα1 [jα1 ] × · · ·×

∑
i<jαm≤n

Aαm [jαm ]

Let Loss(S) be the portion of G1’s weighted volume (over all of its strips) that is

claimed by the intersection of the set of gradients {Gα1 , . . . , Gαm}. Then, we clearly

have

Loss(S) =
∑

1≤i≤n

Lossi(S)

=
∑

1≤i≤n

(
wi × A1[i]×

∏
α∈{2,...,d}\S

Lα ×
∑

i<jα1≤n

Aα1 [jα1 ] × · · ·×

∑
i<jαm≤n

Aαm [jαm ]

)

=
∏

α∈{2,...,d}\S

Lα ×
∑

1≤i<jα1 ,jα2 ,...,jαm≤n

(
wi × A1[i]× Aα1 [jα1 ] ×

· · · × Aαm [jαm ]

)
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The volume contributed by G1, namely, V1 can be written as the quantity not

claimed by any of the other gradients. Using the inclusion-exclusion principle, we

get

V1 =
∏

2≤α≤d

Lα ×
∑

1≤i≤n

wi × A1[i] −
∑

S⊆{2,...,d}∧S 6=∅

(−1)|S|+1Loss(S)

= Loss({}) −
∑

S⊆{2,...,d}∧S 6=∅

(−1)|S|+1Loss(S)

=
∑

S⊆{2,...,d}

(−1)|S|Loss(S)

Observe that this expression contains 2d−1 inner terms of the following general

form:

C ×
∑

1≤i1<i2,i3,...,ik≤n

A1[i1]× · · · × Ak[ik],

where C is constant, the number of indices k is at most d, and each array Aj[ ] corre-

sponds to either a gradient array or the array A[i] = wi ×A1[i]. We further decompose

each term of the above form into (k − 1)! terms by grouping the inner terms of the

summation by the ordering of their indices i2, . . . , ik. This yields at most be(d − 1)!c

terms4 (where e is the natural logarithm base) such that each term has the following

4 Note that
∑d

k=1

(
d−1
k−1
)
× (k − 1)! =

∑d−1
k=0

(d−1)!
(d−1−k)! =

∑d−1
k=0

(d−1)!
k! ≤ e(d− 1)! .
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form:5

C ×
∑

1≤i1<···<ik≤n

A1[i1]× · · · × Ak[ik].

Let us call this expression a sum of ordered products. All we need now is a data

structure that can maintain the sum of ordered products efficiently as array entries are

modified. We show in the following subsection (Section 1.4.2) how to maintain the

sum of ordered products in O(log n) time per update and O(1) time per query, which is

sufficient for the following key theorem for the weighted volume of halfspaces in any

fixed dimension d.

Theorem 1.4.1. The weighted volume of a set of axis-aligned halfspaces in a rectangu-

lar box R in d dimensions can be maintained in O(log n) amortized time per insertion,

with a linear-space data structure.

1.4.2 Maintaining the Sum of Ordered Products

Given d arrays Ai, i = 1, 2, . . . , d, each of size n, we want to efficiently maintain

the following sum of ordered products, under updates to individual array entries:

∑
1≤i1<...<id≤n

A1[i1]× . . .×Ad[id]

5Since we assume that all halfspaces have distinct weights, all inner terms that contain equal indices
are 0, and so we can safely ignore these terms and use a strict ordering on indices i2, . . . , ik.
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For simplicity, let us assume that n is a power of two. For 0 ≤ j ≤ log n and

1 ≤ k ≤ n/2j , let S(j, k) denote the set of consecutive integers in the range [(k−1)2j+

1, k2j]. Observe that S(0, k) = {k} and S(log n, 1) = {1, . . . , n}. Moreover, S(j, k)

is the concatenation of S(j − 1, 2k − 1) and S(j − 1, 2k), for j ≥ 1. Conceptually, S

represents a hierarchically ordered binary partition of the set {1, . . . , n} into singleton

integers. If the partition is viewed as a tree, then S(j, k) refers to the kth node from the

left at the jth level and it is the parent of S(j − 1, 2k − 1) and S(j − 1, 2k).

Let T (j, k, l, r) denote the following sum of ordered products

∑
il<...<ir ∧ il,...,ir∈S(j,k)

Al[il]× . . .×Ar[ir],

where 0 ≤ j ≤ log n, 1 ≤ k ≤ n/2j and 1 ≤ l ≤ r ≤ d. We observe that

T (log n, 1, 1, d) is the sum of ordered products that we want to maintain. Addition-

ally, T (0, k, l, l) = Al[k] and T (0, k, l, r) = 0 for l 6= r. For j ≥ 1, we can write

T (j, k, l, r) in terms of T () values whose first parameter is (j − 1), as shown in the

following lemma.

Lemma 1.4.2. For j ≥ 1, we have the following recurrence:

T (j, k, l, r) = T (j − 1, 2k − 1, l, r) + T (j − 1, 2k, l, r)

+
∑
l≤c<r

(
T (j − 1, 2k − 1, l, c)× T (j − 1, 2k, c+ 1, r)

)
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Proof. A member of S(j, k) is either a member of S(j−1, 2k−1) or S(j−1, 2k). We

can, therefore, decompose T (j, k, l, r) into sums of products based on the sets to which

the indices belong, as follows:

T (j, k, l, r) =
∑

il<...<ir ∧ il,...,ir∈S(j−1,2k−1)

Al[il]× . . .× Ar[ir]

+
∑

il<...<ir ∧ il,...,ir∈S(j−1,2k)

Al[il]× . . .× Ar[ir]

+
∑
l≤c<r


∑

il<...<ir
∧ il,...,ic∈S(j−1,2k−1)
∧ ic+1,...,ir∈S(j−1,2k)

Al[il]× . . .× Ar[ir]


By the distributive property of multiplication over addition, we get

T (j, k, l, r) =
∑

il<...<ir ∧ il,...,ir∈S(j−1,2k−1)

Al[il]× . . .× Ar[ir]

+
∑

il<...<ir ∧ il,...,ir∈S(j−1,2k)

Al[il]× . . .× Ar[ir]

+
∑
l≤c<r



∑
il<...<ic

∧ il,...,ic∈S(j−1,2k−1)

Al[il]× . . .× Ac[ic]

×

∑
ic+1<...<ir

∧ ic+1,...,ir∈S(j−1,2k)

Ac+1[ic+1]× . . .× Ar[ir]
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This expression is equivalent to

T (j, k, l, r) = T (j − 1, 2k − 1, l, r) + T (j − 1, 2k, l, r)

+
∑
l≤c<r

(
T (j − 1, 2k − 1, l, c)× T (j − 1, 2k, c+ 1, r)

)

The lemma follows.

We maintain T (·) values in a table: for each valid selection of (j, k, l, r), the table

has an entry storing T (j, k, l, r). Then, a query can be answered inO(1) time by report-

ing T (log n, 1, 1, d). Moreover, it is easy to show that the table has O(n) entries. When

an array entry As[k] is updated, we update the table entry for T (0, k, s, s) and the table

entries for all T (·) values that are dependent on T (0, k, s, s) through the recurrence rela-

tion given in Lemma 1.4.2. Notice that updating an entry takes constant time, assuming

d is a constant. It can be easily seen that all table entries dependent on T (0, k, s, s)

are in the form T (j, d k
2j
e, l, r) such that 0 ≤ j ≤ log n and 1 ≤ l ≤ s ≤ r ≤ d.

Thus, assuming d is a constant, O(log n) entries are updated in total. This leads to the

following theorem.

Theorem 1.4.3. The sum of ordered products of d arrays of size n can be maintained

with an update time of O(log n), query time of O(1), using a linear-space data struc-

ture.
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1.4.3 Higher Order Partial Sums and Sum of Ordered Products

The reader will notice that the partial sum problem utilized in the halfplane solution

is replaced by sum of ordered products in higher dimensions, suggesting a link between

the two problems. In fact, the sum of ordered products can be viewed as an iterated or

higher-order generalization of the classical partial sum problem.

Given an array A of n numbers, the basic partial sum problem, addresses the fol-

lowing query operation: report query(k) =
∑k

i=1A[i]. There are n different par-

tial sum queries, for 1 ≤ k ≤ n, and one can view them as forming another array

A′[k] = query(k). We can then ask the partial sum problem on A′, which could be

considered the second order partial sum of A. An iterated application of this process

leads to higher order partial sums, with the following general form.

Given an array A of size n, its kth partial sum of order d, denoted Pd(k),
is defined recursively as follows:

Pd(k) =

{∑k
i=1A[i] if d = 1∑k
i=1 Pd−1(i) if d > 1

Considering the d arrays A1, . . . ,Ad of size n, the following definition is a further

generalization of the iterated partial sums problem for A1:

Given d arrays A1, . . . ,Ad of size n, their kth weighted partial sum (of
order d), denoted Wd(k), is defined as follows:

Wd(k) =

{∑k
i=1A1[i] if d = 1∑k
i=1Ad[i]×Wd−1(i) if d > 1
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The following lemma shows that the sum of ordered products is actually a weighted

partial sum.6

Lemma 1.4.4. For d arrays A1, . . . ,Ad,

Wd(n) =
∑

1≤i1≤···≤id≤n

A1[i1]× · · · × Ad[id]

Proof. By induction. The lemma clearly holds for d = 1. For d > 1,

Wd(n) =
n∑
i=1

Ad[i]×Wd−1(i)

=
n∑
i=1

(
Ad[i] ×

∑
1≤i1≤···≤id−1≤i

A1[i1]× · · · × Ad−1[id−1]

)

=
∑

1≤i1≤···≤id≤n

A1[i1]× · · · × Ad[id]

Our sum of ordered products structure can be easily used to maintain weighted (or

iterated) partial sums of d arraysA1, . . . ,Ad. LetAd+1 be an additional array such that

Ad+1[i] = 0 for all i. Then, the weighted partial sum Wd(i) can be obtained by simply

incrementing Ad+1[i] by 1 and then querying for the sum of ordered products of the set

{A1, . . . ,Ad+1}.
6For simplicity of presentation only, we use a non-strict ordering of the array indices (i.e., i1 ≤ · · · ≤

id) in this lemma. The sum of products with strictly ordered indices (i.e., i1 < · · · < id, as defined in
Section 1.4.2) can be easily reduced to this form by shifting arrays. In particular, the strictly ordered
sum of products for d arrays A1, . . . ,Ad is equal to the non-strictly ordered sum of products for arrays
A′1, . . . ,A′d where A′s[i] is defined to as As[i+ s− 1].
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1.5 Dynamic Weighted Volume For Arbitrary Boxes

Computing the Klee’s measure of n 2-grounded boxes in d-space requires maintain-

ing the weighted volume, under insertion-only updates, of n boxes in (d− 2)-space. In

this section, we complete the discussion of this last step, and show how to maintain the

weighted volume under insert-only updates in O(n(d−1)/2 log2 n) amortized time in d

dimensions. Since we require n such insertions in (d − 2)-space, the final complexity

of our algorithm will be O(n · n(d−3)/2 log2 n) = O(n(d−1)/2 log2 n), as desired.

Our scheme is based on the space partition technique originally proposed by Over-

mars and Yap [64]. In particular, we partition the space into to a set of axis-parallel

regions such that the boxes form a set of axis-parallel strips7 inside each region (a

structure known as a trellis). See Figure 1.5 for an illustration. By utilizing a binary

space partition tree on the partition, we reduce the main problem to the simpler case

of maintaining the weighted volume of axis-parallel strips. This case can be relatively

easily solved by extending our halfspace solution.

For simplicity, we first describe a solution for the two-dimensional case in Section

1.5.1, which we later extend into d dimensions in Section 1.5.2. We defer the details of

how we generalize our halfspace solution to the case of axis-parallel strips to Section

7In d dimensions, an axis-parallel strip has the form {x ∈ Rd | a ≤ xk ≤ b} where a and b are reals
and k is an integer between 1 and d.
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Figure 1.5: An arrangement of axis-parallel strips inside a rectangular region in two
dimensions.

1.5.3. The following theorem, which we utilize in our descriptions, is proved in Section

1.5.3 and summarizes our data structure for axis-parallel strips.

Theorem 1.5.1. The weighted volume of a set of axis-aligned strips in a rectangular

box R in d dimensions can be maintained in O(log2 n) amortized time per insertion,

with a linear-space data structure. The data structure additionally supports an elimi-

nation operation in which all strips with weight less than a given weight are deleted.

The cost of the elimination operation can be charged to the preceding insertions, and

thus is also O(log2 n) amortized.

1.5.1 The Planar Case

Let B be a set of n weighted boxes in 2-space. Our objective is to maintain the

weighted volume of a dynamic set of boxes that undergoes insertions from B. We

propose a structure that achieves this in O(
√
n log2 n) amortized time per update.
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  (a) (b)

Figure 1.6: (a) An example partition. (b) Its binary space partition tree.

We first create a partition of the space into rectangular regions such that the set

of boxes, B, forms a set of axis-parallel strips inside each region. The partition is

formed in two steps as follows. Each box in B has 2 vertical boundaries (left and right

sides) and 2 horizontal boundaries (top and bottom sides). Thus, there are 2n vertical

and 2n horizontal boundaries in total. In the first step of the partition, we sort the

vertical boundaries with respect to their first (horizontal) coordinates. Then, we draw

a vertical line through each
√
n-th boundary in the sorted list, dividing the space into

O(
√
n) slabs, each of which contain O(

√
n) vertical boundaries in its interior. In the

second step of the partition, we individually divide each slab along the second axis. We

do this by sorting the horizontal boundaries by their second (vertical) coordinates and

then drawing a horizontal line through: (1) each
√
n-th horizontal boundary of boxes

passing through the slab, and (2) each box corner inside the slab. Consequently, each

slab is partitioned into O(
√
n) final regions containing O(

√
n) horizontal boundaries

(See Figure 1.6a). Note that each slab contains O(
√
n) box corners because there are

only O(
√
n) vertical boundaries inside.
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We call the final regions of the partition cells. The following lemma, which is

proved in [64], summarizes the properties of the partition. We include the proof for

completeness.

Lemma 1.5.2. The partition has the following properties.

(a) There are O(n) cells.

(b) Any box intersects O(
√
n) cells on its boundary.

(c) Each cell intersects the boundary of O(
√
n) boxes in B.

(d) The boxes of B contain no corner in the interior of any cell.

Proof. (a) is obvious from construction. We show (b) as follows. Each vertical bound-

ary of a box intersectsO(
√
n) cells that are contained in the same single slab. Moreover,

each horizontal boundary of a box intersects at most one cell in each slab, thus, O(
√
n)

cells in total. It follows that each box intersects O(
√
n) cells on its boundaries. (c)

is due to that each cell intersects at most O(
√
n) vertical and horizontal boundaries.

Finally, (d) holds because each slab is partitioned into cells by drawing horizontal lines

through the box corners.

The last property implies that B forms a set of strips inside each cell. As the first

key part of our algorithm, we maintain, for each cell C, the weighted volume on C

contributed only by the boxes that intersect C on their boundary. We do this by utilizing
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a two-dimensional instance of the strips structure given in Theorem 1.5.1 for each cell.

By Lemma 1.5.2, there are O(
√
n) boxes that intersect any cell on their boundary,

thus, the size of each strip structure is O(
√
n). Also, during the insertion of a box B,

we can update all strip structures inO(
√
n log2 n) amortized time, because B intersects

O(
√
n) cells on its boundary and updating the strip structure of each of these cells takes

O(log2 n) time. We note that the cells lying on the boundary of B can be efficiently

obtained by using the partition tree that we describe below.

Clearly, the weighted volumes maintained in the cells exclude the contributions of

the boxes that entirely contain the cells. The second key part of our algorithm is to

include these contributions so that the overall weighted volume is correctly maintained.

To do this efficiently, we utilize a binary space partition tree. In particular, we maintain

a balanced binary tree in which every node v is associated with a rectangular region of

the space Rv, such that for all internal nodes v with children vl and vr, Rv is divided

into Rvl and Rvr by a vertical or horizontal line. Moreover, the root is associated with

the whole space and each leaf is associated with one cell of our partition bijectively.

Such a balanced space partition tree can be easily constructed in O(n log n) time by

constructing a balanced tree for the slabs first, and then for the cells within each slab

(See Figure 1.6b).

When a box B is inserted to the structure, we store an entry for B at every node v

such that B subsumes Rv but not Rparent(v). This storage scheme conceptually parti-
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tionsB into a set of maximal fragments, where each fragment is the intersectionB∩Rv

for a node v that B is stored. Note that this fragmentation excludes the sections of B

that partially overlap the cells, which are already stored in the corresponding strip struc-

tures. The following lemma is borrowed from [64], and included here with proof only

for the sake of completeness.

Lemma 1.5.3. Each boxB is stored inO(
√
n log n) nodes in the binary space partition

tree and these nodes can be traversed in O(
√
n log n) steps.

Proof. By Lemma 1.5.2(b), there are O(
√
n) leaves v in the tree such that B partially

overlaps Rv, i.e., Rv ∩ B 6= ∅ and Rv * B. Then, there are O(
√
n log n) nodes u

(internal or leaf) such that B partially overlaps Ru. This follows from the fact that each

such node u is above at least one leaf v that is partially overlapped by B and the tree

height is O(log n). Since the tree is binary and each node that stores B has a parent u

that is partially overlapped, B is stored at O(
√
n log n) nodes.

The nodes storing B can be traversed by recursively descending in the tree through

the nodes that are partially overlapped until nodes subsumed by B are reached. Since

the number of partially overlapped nodes is O(
√
n log n), so is the traversal time.

For efficient weighted volume maintenance, we remove any box fragments that are

entirely contained by boxes of higher weight. In particular, when we insert a box entry

B to a node v, we delete all box entriesB′ stored below v such thatw(B′) < w(B). See
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  (a) (b)

B1 B2

B5B4B2

B3

x x

B5B4x

Figure 1.7: (a) A set of boxes stored in the partition tree. Box with larger index has
higher weight. (b) The tree after inserting an entry for box B3. All lower weight entries
below the inserted entry are deleted.

Figure 1.7 for an example. Note that the deleted fragments have no contribution to the

weighted volume because they are contained by a heavier box, and thus they are safe

to be deleted. Similarly, for each cell that a newly inserted box subsumes, we delete

all lower weight boxes in the corresponding strip structure by using its elimination

operation. Finally, we keep only the highest weight box at each node. The result of this

policy is an invariant that for any particular box B at a node v, all boxes stored above

v have lower weights while all boxes stored below (including the strip structures) have

higher weights. Consequently, the weighted volumes of the strip structures directly

contribute to the overall. Moreover, we can write the weighted volume contribution of

a box B stored at node v as

w(B)× (|Rv| − A(v))

where |Rv| is the ordinary volume (area) of region Rv and A(v) is the ordinary volume

of the union of the boxes stored strictly below v (including the strip structures). Note
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that A(v) equals the volume that is claimed from B by higher weight fragments, which

are all stored below v. The maintenance of A(v) for leaf nodes v can be done with

no extra cost by utilizing a copy of the strips structure at v that maintains the ordinary

volume rather than the weighted volume. (In this case, the weights of the boxes are set

to 1.) For each internal node v with children vl and vr, A(v) can be written recursively

in terms of A(vl) and A(vr), and thus can easily be updated during the tree traversals.

In particular, we have:

A(v) =



|Rvl |+ |Rvr | if vl and vr both store a box

|Rvl |+ A(vr) if vl stores a box and vr does not

A(vr) + |Rvr | if vr stores a box and vl does not

A(vr) + A(vl) if neither vl nor vr store a box

The overall weighted volume is easily maintained as the sum of weighted volume

contributions of each strip structure and each box entry in the tree. It remains to show

that removing lower weight box entries during insertions do not increase the overall

amortized cost ofO(
√
n log2 n) per insertion. Recall that the tree traversal performed to

insert a box takes O(
√
n log n) steps. To efficiently delete the lower weight boxes after

an insertion, we maintain at each node v, the weight of the lowest weight box stored

below v (including the boxes stored in the strip structures). This allows us to locate the
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box entries that we need to delete, without searching the whole tree. In particular, we

descend down the tree as long as the lowest weight stored below the current node is

lower than weight of the inserted box. The additional traversals performed to locate the

deleted entries in the tree can be charged to the traversals which inserted these entries.

Notice that each step of an insertion traversal (i.e., traversal of an edge) is charged

at most once by a deletion traversal. Finally, as we mention in Theorem 1.5.1, the

time spent to eliminate the box entries in the strip structures can also be charged to

the preceding insertions. It follows that the amortized cost of a box insertion remains

O(
√
n log2 n).

The binary space partition tree usesO(n) space and can be constructed inO(n log n)

time. Each of the O(n) strip structures uses O(
√
n) space (by Lemma 1.5.2(c)) and can

be constructed in O(
√
n log n) time. This yields the following theorem.

Theorem 1.5.4. There exists a data structure that maintains the weighted volume of n

2-dimensional boxes in O(
√
n log2 n) amortized time per insertion. This structure can

be constructed in O(n
√
n log n) time and consumes O(n

√
n) space.

1.5.2 The d-dimensional Case

We now extend our weighted volume data structure to d dimensions. In d dimen-

sions, the high-level algorithm is the same. We construct a d-dimensional partition

whose cells do not contain any (d−2)-dimensional facets of any box, i.e., all boxes are
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strips inside the cells. In this section, we briefly describe how this construction is done.

(Details on this construction may be found in [64].) Note that the rest of the algorithm

can be adapted trivially to d-dimensions: we organize the final partition in a balanced

binary space partition tree and apply our maintenance scheme. We emphasize that we

utilize the d-dimensional version of our strips structure in the leaves of the partition

tree.

Let B be a set of n weighted boxes in d-space. We construct the partition in d steps

as follows. Each box has two (d − 1)-dimensional boundaries that are orthogonal to

the ith coordinate axis, for a particular i (1 ≤ i ≤ d). For simplicity, we call these

boundaries i-bounds. In the first step of construction, we sort the 1-bounds of the boxes

with respect to their first coordinate. Then, we draw a (d− 1)-dimensional hyperplane

(orthogonal to the first axis) through each
√
n-th 1-bound in the sorted list, dividing the

space into O(
√
n) sections, each of which contains O(

√
n) 1-bounds. In the second

step, we individually divide each section along the second coordinate. We do this by

sorting the 2-bounds and then drawing a hyperplane (orthogonal to the second axis)

through: (1) each
√
n-th 2-bound in the section, and (2) each 2-bound whose owner

box contains a 1-bound in the section. Consequently, each section is partitioned into

O(
√
n) subsections containing O(

√
n) 1-bounds and 2-bounds. In the third step, we

cut each section with respect to the third axis through: (1) each
√
n-th 3-bound in the

section and (2) each 3-bound whose owner box contains a 1-bound or 2-bound in the
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section. We continue in this fashion for a total of d steps, creating a partition with

O(nd/2) cells each containing O(
√
n) i-bounds for any 1 ≤ i ≤ d. The following is the

d-dimensional analog of Lemma 1.5.2, also from [64].

Lemma 1.5.5. The partition has the following properties.

(a) There are O(nd/2) cells.

(b) Any box intersects O(n(d−1)/2) cells on its boundary.

(c) Each cell intersects the boundary of O(
√
n) boxes in B.

(d) The boxes of B contain no (d− 2)-dimensional facet in the interior of any cell.

Proof. (a) is true because at each step of the construction, the number of sections in-

crease by a factor of O(
√
n). We prove (b) as follows. Each i-bound intersects at most

O(n(i−1)/2) sections just before the ith step of the construction. After the ith step, for

any section that an i-bound intersected previously, the i-bound can intersect at most one

of its resulting subsections (because the cuts are parallel to the i-bound). Thus, each i-

bound still intersectsO(n(i−1)/2) sections after the ith step. It follows that each i-bound

intersects O(n(d−1)/2) sections when all d steps are completed. Since each box has 2d

i-bounds in total, (b) follows. (c) is due to that each cell intersects at most O(
√
n)

i-bounds for each 1 ≤ i ≤ d. Finally, we prove (d) as follows. A (d − 2)-dimensional

facet is the intersection of a j-bound and a k-bound of a box for 1 ≤ j < k ≤ d. By
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induction, after ith step of the construction, no resulting subsection contains a j-bound

and a k-bound of the same box such that 1 ≤ j < k ≤ i. Thus, after the dth step, no

cell contains a (d− 2)-dimensional facet.

Given the above partition, we can utilize our partition tree algorithm of the previous

section (with d-dimensional strip structures). By following similar proof steps, we

deduce the following result.

Theorem 1.5.6. We can maintain the weighted volume of a set of n d-dimensional

boxes in O(n(d−1)/2 log2 n) amortized time per box insertion. This data structure can

be constructed in O(n(d+1)/2 log n) time using O(n(d+1)/2) space.

Computing the Klee’s measure for 2-grounded boxes in d-dimensional space re-

quires n box insertions into a (d− 2)-dimensional structure, for the total complexity of

O(n · n(d−3)/2 log2 n) = O(n(d−1)/2 log2 n), giving us the main result of this chapter.

Theorem 1.5.7. Klee’s measure for n 2-grounded boxes in d-space can be computed

in worst-case time O(n(d−1)/2 log2 n) and space O(n(d−1)/2).

1.5.3 Weighted Volume of Axis-parallel Strips

Our technique for maintaining the volume of halfspaces extends easily to strips, by

keeping a separate array for strips orthogonal to each axis. In this section, we describe

this extension, and show how to maintain the weighted volume of axis-parallel strips
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Figure 1.8: (a) A two-dimensional arrangement of four strips with weights in descend-
ing order w4 > w3 > w2 > w1. Notice the intersection between the strips with weights
w1 and w3, where the strip with weight w3 dominates. (b) The array representation of
the strips. (c) Illustrating the intersection of the strips. The “light gray” (resp.,“dark
gray”) section shows the portion where the weights of the vertical (resp., horizontal)
strips dominate.

that are in the form {x ∈ Rd | a ≤ xk ≤ b} (where a and b are reals). In particular,

let S1, . . . , Sn be a set of n strips such that the indices are ordered by weight, i.e.,

w(S1) < · · · < w(Sn). We maintain d arrays A1, . . . , Ad of size n. If the strip Si

is orthogonal to the kth axis, then the entry Ak[i] represents the total width of Si not

claimed by the strips orthogonal to the kth axis. Otherwise, Ak[i] is zero. See Figure

1.8. The algorithm from Section 1.4 can then be applied on these arrays to maintain the

weighted volume, at the cost of O(log n) per array entry change.

We utilize a standard data structure known as a segment tree to maintain the arrays.

In particular, the segment tree used to maintain the array Ak stores the strips orthogonal

to the kth axis as one-dimensional weighted intervals on the kth axis. (The intervals

are the projections of these strips.) The segment tree stores each interval in O(log n)

of its nodes, which conceptually partitions the interval into O(log n) subintervals in a

52



Chapter 1. Computing Klee’s Measure of Grounded Boxes

way very similar to the binary space partition tree described in Section 1.5.1. (For more

details on segment trees, see [35].)

By applying the same maintenance ideas from the space partition tree, we can main-

tain the length dominated by each interval (which corresponds to the array entry of its

strip) in O(log n) time per interval insertion. Each interval insertion affects O(log n)

array entries amortized. This follows from the fact that each inserted interval is stored

on O(log n) nodes in the tree, with O(log n) total ancestors. The array contribution

of the lower weight intervals stored in these O(log n) ancestors are possibly modified,

whereas the contributions of the lower weight intervals in all descendants are deleted,

for which we charge to their corresponding insertions.

Each array entry change is coupled with an O(log n) time update in our sums of

ordered products structure. It follows that we can maintain the weighted volume of

strips in O(log2 n) amortized time per insertion.

We finally note that we also need an elimination operation as part of the main al-

gorithm described in Section 1.5.1. In this elimination operation, we delete all strips

with weights less than a given weight w. This can be easily achieved by doing a binary

search on the weights to identify the strips to delete and then deleting the corresponding

intervals from the segment trees. As usual, we can charge the deletions to the corre-

sponding insertions, thus this operation can be achieved in O(log2 n) amortized time as

well.
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1.6 Klee’s Measure for d-Grounded Boxes

When the boxes are d-grounded, namely, they are all anchored at a common cor-

ner, the time complexity of our algorithm improves by a factor of log n. This fol-

lows from the fact that the Overmars-Yap partition, when applied on d-grounded boxes,

yields to regions that contain half-spaces rather than strips. By Theorem 1.4.1, we can

maintain weighted volume of each region in O(log n) time per update (improving on

O(log2 n) for strips), reducing the running time of our algorithm to O(n(d−1)/2 log n).

The d-grounded case of the problem is also known as the hypervolume indicator prob-

lem, which is utilized in evolutionary computing often to assess the quality of multi-

objective optimization algorithms. Several techniques in the computational geometry

literature can be used solve the problem efficiently. Prior to our algorithm, the best

bounds with respect to the number of dimensions are as follows:

• For d ≤ 3, O(n log n), based on space-sweep [40].

• For d = 4, O(n3/2polylog n) by Chan [22], using reduction to unit-cubes.

• For d = 5, O(n2polylog n) by Kaplan et al. [52].

• For d ≥ 6, O(n(d+2)/3) by Bringmann [15], using reduction to fat-boxes.
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Compared to the above results, our algorithm is faster in dimensions 4, 5 and 6,

improving the bound for computing the hypervolume indicator in these dimensions,

and using a simpler approach.

1.7 Conclusion

We have proposed a new method for computing Klee’s measure on grounded boxes,

which includes the hypervolume indicator as a special case. In particular, we obtained

a bound of O(n(d−1)/2 log2 n) for the k-grounded problem for 2 ≤ k < d, which is

an improvement of roughly
√
n over the general Klee’s bound. In a follow-up work

by Bringmann [16], it has been shown that a significant breakthrough of our bound for

2-grounded boxes would imply a breakthrough for the general Klee’s problem. On the

other hand, we emphasize that even if our bound is (nearly) tight for 2-grounded boxes,

it is possible that better algorithms exist for k-grounded boxes where k is strictly larger

than 2.

Our techniques also lead to an algorithm for the hypervolume indicator problem

that is faster than any previously published algorithm for dimensions 4, 5 and 6. The

research on hypervolume indicator is still very active. A recent work by Chan [24] has

improved our bounds for hypervolume indicator even further, to O(nd/3 polylog n) for

d ≥ 4.
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Given the long and distinguished history of Klee’s measure problem, where all the

previous improvements have been limited to cube-like boxes, the grounded boxes offer

an interesting new direction to pursue.
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Chapter 2

The Union of Uncertain Boxes∗

2.1 Introduction

In this chapter, we consider the problem of estimating the volume covered by a set of

overlapping boxes in d-space when the existence of each box is known only with partial

certainty. Specifically, we are given a set of n axis-aligned boxes, in which the ith box

is known to be present only with probability pi. (The probabilities of different boxes are

independent of each other.) This is a probabilistic version of Klee’s Measure Problem.

(A brief history of Klee’s Measure Problem is given in Section 1.1.1 in Chapter 1.)

Besides being a fundamental problem in its own right, it is also a natural framework

∗This chapter is based on a joint work with Luca Foschini, John Hershberger and Subhash
Suri. Parts of this chapter appeared in the following publications: [78] (Published and copyright
held by Springer. The final publication available at http://link.springer.com/10.1007/
978-3-642-23719-5_50.)
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to model risk and uncertainty in geometric settings. In order to motivate the problem,

consider the following scenario.

Suppose that a tract of land has a variety of health hazards, occurring in possibly

overlapping regions. The virulence of each hazard is expressed as a survival rate, i.e.,

the probability that an entity survives after being exposed to the hazard. Assuming

independence of the hazards, the probability of survival at a point is the product of the

survival probabilities for the different hazards affecting the point. The average survival

rate within the whole tract is the integral of the survival probabilities of all points in the

tract divided by the area the tract. It is easy to see that the integral of concern equals

the expected area of covered by the hazardous regions, if we treat the survival rates as

the probability of absence for each region.

Let us now introduce the problem more formally. Recall (from Chapter 1) that a d-

dimensional boxB is the Cartesian product of d one-dimensional ranges, namely, B =

Πd
i=1[ai, bi] and its volume is vol(B) = Πd

i=1|bi − ai|. In our problem, we consider

uncertain boxes. In particular, each box Bi is assumed to be present (or active) with an

independent probability pi, and absent otherwise. Under these conditions, we wish to

compute the expected value of the total volume occupied by such a collection of boxes.

More generally, we may wish to compute the probability distribution of the volume—

for each value V , the probability that the volume of the union is V . In fact, we wish to

maintain a collection of uncertain boxes so that their volume statistics (expectation or
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tail bounds) are easily updated as boxes (along with their activation probabilities) are

inserted or deleted.

Our main result in this chapter is a data structure for maintaining the expected vol-

ume over a dynamic set of uncertain boxes in amortized time O(n(d−1)/2 log n) per

insert or delete. Any major improvement in the update complexity of our data struc-

ture will imply a breakthrough on Klee’s Measure Problem because the d-dimensional

Klee’s problem can be solved by maintaining a (d − 1)-dimensional volume over n

insertions and deletions [23, 64]. In particular, one can utilize our data structure to

compute the expected volume of a static set of uncertain box in O(n · n(d−2)/2 log n) =

O(nd/2 log n) time, which nearly matches the best bound for computing the volume of

a set of regular (certain) boxes.

The core problem in computing the volume of uncertain boxes arises already in one

dimension, and leads us to a new data structure called an anonymous segment tree. This

structure allows us to compute the expected length covered by a set of uncertain seg-

ments in logarithmic time per update. Building on this foundation, we then generalize

the problem to d dimensions by combining it with the ideas of Overmars and Yap [64].

(The issues underlying this extension are mostly technical, albeit somewhat non-trivial,

since the Overmars-Yap scheme uses a space-sweep that requires a priori knowledge of

the box coordinates, while we assume a fully dynamic setting with no prior knowledge

of future boxes.)
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Surprisingly, while the expected value of the volume can be efficiently maintained,

we show that computing the tail bounds, or the probability distribution, of the volume

is intractable—specifically, it is NP-hard to compute the probability that the volume of

the union exceeds a given value V even when the dimension is d = 1.

Chapter Organization

The remaining of the chapter is organized as follows. In Section 2.2, we describe

our NP-hardness result for computing tail bounds. In Section 2.3, we solve the dy-

namic expected volume problem on one-dimensional uncertain segments and describe

the anonymous segment tree data structure. In Section 2.4, we describe our solution for

maintaining the expected volume in higher dimensions. We finish with a conclusion in

Section 2.5.

2.2 Probabilistic Volume: Expectation and Tail Bounds

If algorithmic efficiency were not the main concern, then the expected volume of

the union of n boxes would be easy to compute in polynomial time. A set of n boxes

in d-space is defined by O(dn) facets, and the hyperplanes determined by those facets

partition the space into O(nd) rectangular cells, with each cell fully contained in all

the boxes that intersect it. For each cell, compute the probability that at least one of
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its covering boxes is active. By the linearity of expectation, the expected volume is

simply the sum of the volumes of these cells weighted by their probability of being

covered. This naı̈ve algorithm runs in O(nd+1) time, which is polynomial in n for fixed

dimension. In Section 2.4, we present our main result: how to maintain the expected

volume much more efficiently under dynamic updates.

On the other hand, we argue below that computing the probability distribution (i.e.,

the tail bounds) is intractable. In particular, even in one dimension, computing the

probability that the union of n uncertain line segments has volume (length) at least V

is NP-hard. The following theorem shows that it is hard to compute the probability that

the union has length precisely L for some integer L—since we use only integer-valued

lengths, computing the tail bound is at least as hard (the probability of length exactly L

can be determined from those of lengths at least L and at least L+ 1.)

Theorem 2.2.1. Given n disjoint line segments on the integer line, where the ith seg-

ment is active with probability pi, it is NP-hard to compute the probability that the

union of the active segments has length L.

Proof. We show a reduction from the well-known NP-complete problem SUBSET-

SUM [42]. The subset-sum problem takes as input a set of positive integers A =

{a1, . . . , an}, a target integer L, and asks if there is an index subset I ⊆ {1, . . . , n}

whose elements sum to the target value L, that is,
∑

i∈I ai = L. Given an instance of

the subset-sum problem (A,L), we create a set of uncertain segments {s1, s2, . . . , sn},
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as follows. The segment si begins at point
∑

j<i aj and has length ai. Each of the n

segments occurs with probability pi = 1/2. We observe that because of the uniform

probability, each of the 2n subsets of {s1, s2, . . . , sn} is equally likely, each occurring

with probability 2−n.

Since the segments s1, . . . , sn are disjoint, for any index subset I ⊆ {1, . . . , n}, the

union of the segments {si|i ∈ I} has length precisely
∑

i∈I ai. Thus, I is a solution to

the subset sum problem (A,L) if and only if the union of the segments indexed by I

has length L. However, the probability that the union of the active segments has length

L is precisely equal to the number of index subsets that are valid solutions of the subset

sum problem divided by 2n. Thus, given the probability that the union of the active

segments is L, we can deduce whether the subset sum problem has a solution. This

completes the proof.

2.3 Maintaining the Expected Measure in 1D

We now describe our data structure for one-dimensional expected volume problem.

In the next section, we show how to embed it in an appropriately generalized version

of the Overmars-Yap structure for the d-dimensional problem. We describe the data

structure, called the anonymous segment tree, first without the probabilities, focusing
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on its form and updates, and then present an abstraction that retains all the key elements

and yet accommodates probabilistic segments.

2.3.1 Anonymous Segment Tree

Let S be a dynamic set of n line segments on the number line that undergoes in-

sertions and deletions. Our goal is to maintain the length covered by the union of the

segments in S. We simply call this length the measure of S. The segments in S split

the number line into at most (2n + 1) disjoint intervals, called primitive intervals. We

maintain a balanced binary tree (e.g., red-black tree) whose keys are the coordinates of

the segment endpoints, and whose leaves correspond to the primitive intervals. Each in-

ternal node represents the union of all its leaf descendants’ intervals. (See Figure 2.1a.)

Consider a leaf v and its associated primitive interval I = (x1, x2). Let SI ⊂ S

be the subset of segments that cover I , and define the coverage count of v, denoted

cover(v), as |SI |. The measure of v, denoted µ(v), is clearly zero if cover(v) = 0 and

x2−x1 otherwise. The measure of S is the sum of µ(v) over all leaves v. The coverage

count is an inefficient mechanism for maintaining the measure when segments are in-

serted or deleted, so we use a secondary quantity, called ccover(v). (The name ccover

derives from complete coverage count.) The ccover values satisfy the two invariants

described below.
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SUM INVARIANT: For any leaf v, cover(v) is the sum of ccover(a) over
all ancestors a of v (including v itself).

A trivial way to achieve the invariant is to set ccover(v) = cover(v) for each leaf v

and ccover(u) = 0 for each non-leaf node u. But, as we show below, ccover() allows

us to support maintenance of the measure through its flexibility. We use ccover() values

to maintain the measure as follows, where L(v) is the length of v’s interval.

µ(v) =



L(v) if ccover(v) > 0

0 if ccover(v) = 0 ∧ v is a leaf

µ(vl) + µ(vr) if ccover(v) = 0 ∧ v has children vl, vr

(2.1)

The following lemma is easily established.

Lemma 2.3.1. Let a node v be called exposed if ccover(a) = 0 for all ancestors a of v

(excluding v). Then for any exposed node v, µ(v) is the measure of S restricted to v’s

interval. In particular, µ(root) is the measure of S.

Proof. Consider an exposed node v such that ccover(v) > 0. Then the measure of S

restricted to v’s interval is L(v). This is captured by the first line of (2.1). Now consider

an exposed leaf v such that ccover(v) = 0. Then cover(v) = 0 and consequently the

measure of S in v’s interval is 0. This is captured by the second line of (2.1). Finally,

consider an exposed internal node v such that ccover(v) = 0. Then vl and vr are
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exposed. By induction, µ(vl) is the measure of S restricted to vl’s interval. A similar

observation applies to µ(vr). Then the measure restricted to v’s interval is the sum of

these two quantities and this is captured by the third line of (2.1).

PUSHUP INVARIANT: For each non-leaf node v with children vl and vr, at
least one of ccover(vl) and ccover(vr) is zero.

We achieve this invariant by applying the following push-up operation at each in-

ternal node v: Let vl and vr be children of v. Decrement ccover(vl) and ccover(vr) by

min(ccover(vl), ccover(vr)) and increment ccover(v) by the same amount. (See Fig-

ure 2.1b.) Notice that this operation restores the push-up invariant in v while preserving

the sum invariant. (It, however, possibly breaks the push-up invariant in its parent, but

this can be corrected by applying the same operation at the parent.) By applying push-

ups throughout the whole tree in bottom-up fashion, from the leaves to the root, we

proagate the values of ccover() up the tree as much as possible, which in turn allows us

to update the µ() values efficiently.8

We now discuss how to preserve the sum and push-up invariants during insertion

and deletion of segments so that the measure of S is correctly maintained in µ(root).

For simplicity, we focus our attention on the changes in ccover() values. The µ() values

are updated as necessary when the ccover() values change. If ccover(v) or the interval

8The ability to move ccover() values between nodes is the inspiration for the name anonymous seg-
ment tree: the coverage representation for a node is independent of the covering segments. Coverage of
an interval by a single segment is indistinguishable from coverage by an arbitrary number of consecutive
short segments.
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Figure 2.1: (a) An anonymous segment tree, positive ccover values are shown. (b) the
push-up operation, ci’s stand for ccover values.

of v changes at a node v, then µ(v) must be updated at all ancestors of v, including v

itself. In each operation that we discuss below, the total cost of updating the µ() values

is logarithmic.

We insert a segment s in two steps. In the first step, we insert the segment’s end-

points as keys into the tree. This ensures that the leaves represent the new set of prim-

itive intervals. As a result of a single key insertion, some leaf v is replaced by a new

internal node u with two new leaves attached to it. (See Figure 2.2.) This corresponds

to splitting the primitive interval represented by v. To preserve our invariants, we set

ccover(u) to ccover(v) and the ccover() values of the new leaves to 0. After the key in-

sertion, the balance of the tree may need to be restored by rotations. Before a rotation,

we push the ccover() values of the participating nodes down to their children. (See

Figure 2.3.) This ensures that the sum invariant is preserved during the rotation; how-

ever, the push-up invariant may be violated. After the rotation, we restore the push-up
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Figure 2.2: A key insertion.
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Figure 2.3: A rotation.

invariant by performing push-ups on the participating nodes. The total cost of the key

insertion is then O(log n).

After the key insertions, the structure still stores the old measure. In the second step,

we insert s into our structure. This operation is applied as in segment trees: segment s is

associated with a set C(s) of canonical nodes such that for every node v in C(s), s covers

the interval of v but not its parent’s. There are logarithmically many such nodes and

they can be traversed in logarithmic time [35]. Moreover, the intervals associated with

the canonical nodes are disjoint and their union equals s. We increment the ccover()

value at each canonical node to preserve the sum invariant, then apply push-ups at

these nodes and their ancestors to restore the push-up invariant. Since the number of
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ancestors of the canonical nodes is logarithmic, the total cost of the insertion operation

is O(log n).

Similarly to insertion, deletion is also performed in two steps. This is the inverse

of insertion—we decrement ccover(v) for each canonical node v ∈ C(s). We then

perform push-ups at all the nodes of C(s) and their ancestors to restore the push-up

invariant. One issue that is worth mentioning is that the ccover() values of the canonical

nodes may drop below zero during deletion. We now argue that after the push-ups, all

ccover() values in the tree remain non-negative. Notice that the push-ups push all the

negativity up to the root. This negativity is guaranteed to be cancelled out at the root,

because the push-up invariant ensures that ccover(root) is non-negative. To see this,

imagine a path starting at root, drawn by following the children whose ccover() values

are zero. The destination of this path is a leaf whose cover() value equals ccover(root).

Then, ccover(root) should be non-negative.

After deleting s, we remove the keys corresponding to its endpoints from the tree

as follows. Let v be the node whose key is to be deleted. Let u be the rightmost leaf

in the left subtree of v, and let w be the leftmost leaf in the right subtree of v. Notice

that the deletion corresponds to the merge of the primitive intervals of w and u. Let

u′ be the father and u′′ be the sibling of u. (See Figure 2.4.) Following the standard

deletion procedure for binary search trees, we replace the key of v with the key of u′,

which is the largest key in v’s left subtree. Afterwards, we replace u′ with u′′. Thus u′
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Figure 2.4: The deletion.

and u are deleted, and w now corresponds to the merged primitive interval. In fact, the

intervals of all the nodes on the rightmost path of the left subtree of v and the leftmost

path of the right subtree of v have changed. (Recall that one has to recompute µ()

values for these nodes and their ancestors). In accordance with the structural changes,

we set ccover(u′′) to ccover(u′′) + ccover(u′) to preserve the sum invariant. The push-

up invariant may be violated at u′′, so we apply push-ups to u′′ and possibly to its

ancestors. Any rotations needed to balance the structure are handled as in the insertion

case. It easily follows that the cost of a segment deletion is also O(log n).

We now can deduce the following lemma.

Lemma 2.3.2. We can maintain the measure of a dynamic set of n segments inO(log n)

time for insert or delete operations, and O(1) time for measure query.
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We next show how to generalize the anonymous segment tree to deal with proba-

bilistic segments. Towards that goal, we introduce an abstract framework that includes

the measure of probabilistic segments as a special case.

2.3.2 An Abstract Anonymous Segment Tree

Let f be a function mapping the segments in S to some range set G, and let ⊕

be a commutative and associative binary operation on G. We consider the problem

of maintaining the following sum for each primitive interval I of the set S: F (v) =∑
s∈SI f(s), where v is the leaf associated with I and the summation uses the ⊕ oper-

ation.9

We compute F (v) indirectly by storing a quantity called FF (v) at each node v of

the tree, and maintain the invariant that the sum of FF (a) over all ancestors a of v

equals F (v). (This is the equivalent of the sum invariant from Section 2.3.1.) However,

such a maintenance needs additional requirements to be efficient. We require that ⊕ is

invertible, and there is a total order ≤G on G such that

A ≤G B ⇐⇒ A⊕ C ≤G B ⊕ C. (*)

9Observe that if G is the set of integers, ⊕ is integer addition, and f(s) = 1 for every s, then
F (v) = cover(v), as in the preceding section.
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In other words, (G,⊕,≤G) forms a totally ordered abelian group. Finally, we reduce

the range of f() from G to G+, defined as G+ = {g | g ∈ G ∧ e ≤G g}, where e is

the identity element of ⊕.

The push-up invariant in this abstract setting is that, for each internal node v with

children vl and vr, at least one of FF (vl) and FF (vr) is e and the other is in G+.

Repeated push-up operations in the tree, starting from the leaves, establish this in-

variant. In particular, let v be an internal node with children vl and vr, and with-

out loss of generality assume that FF (vl) ≤G FF (vr). The push-up operation sets

FF (v) = FF (v) ⊕ FF (vl), FF (vl) = e and FF (vr) = FF (vr) ⊕ FF (vl)
−1, where

−1 denotes the inverse with respect to ⊕. Due to condition (*), this operation restores

the push-up invariant in v. Following the same ideas in Section 2.3.1, one can easily

show that setting FF (v) = F (v) for all leaves v in the tree and then applying push-ups

in bottom-up fashion produces a configuration of FF () values that satisfy both the sum

and the push-up invariants.

Under this scheme, we handle the insertion of a segment s as follows. We first

insert the endpoints of s as keys to the tree. During the key insertions, we preserve our

invariants the same way we did in Section 2.3.1. Then, s itself is inserted to the tree.

We do this by adding f(s) to FF (v) for each canonical node v of s. The invariants are

preserved by push-ups as usual.
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In the case of deletion, we first remove s from the tree by adding f(s)−1 to FF (v)

for each canonical node v of s. Notice that the FF () values of the canonical nodes may

get negative (i.e., outside G+). However, similar to the case in Section 2.3.1, the push-

up invariant guarantees that all FF () values remain non-negative after the push-ups.

Once s is removed from the tree, we remove the keys corresponding to the endpoints of

s and this is done as in Section 2.3.1. It is easy to verify that the insertion and deletion

operations cost O(log n) time.

2.3.3 Measure of Probabilistic Segments

We now show how to use the abstract anonymous segment tree framework for main-

taining the measure of probabilistic segments. For the sake of simplicity, we maintain

the complement of the expected measure: the expected value of the length not covered

by any active segment.10 In order to maintain the measure for probabilistic segments,

we apply our abstract framework twice. First, for each leaf v, we maintain the number

of segments that cover its interval and have probability 1. We denote this by cover(v),

and use the deterministic coverage count algorithm to maintain it. Second, we main-

tain the probability that the primitive interval of a leaf v is uncovered by the segments

whose probability is strictly less than 1. (The segments with probability 1 are handled

separately, and more easily.) We denote this quantity by prob(v), and maintain it us-

10We assume that all segments are contained in a finite, bounded range, ensuring that the complement
is bounded.
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ing our generalized scheme as follows. We define G as the set of positive reals, ⊕ as

multiplication, ≤G as ≥, and set f(s) to

f(s) =


(1− ps) if ps < 1

1 if ps = 1

Observe that F (v) represents prob(v). For ease of reference we denote the FF (v)

values used to maintain prob() by pprob(v). We can define the uncovered measure of

a node v, denoted ν(v), recursively as follows:

ν(v) =



0 if ccover(v) > 0

pprob(v) · L(v) if ccover(v) = 0 ∧ v is a leaf

pprob(v) · (ν(vl) + ν(vr)) if ccover(v) = 0 ∧ v has children vl and vr

(2.2)

Lemma 2.3.3. Let µ̄(v) denote the complement of the expected measure of S restricted

to v’s interval, let aprob(v) be the product of pprob(a) over all ancestors a of v (ex-

cluding v), and let a node v be called exposed if ccover(a) = 0 at all strict ancestors a

of v. Then, for any exposed node v, we have µ̄(v) = aprob(v) · ν(v).

Proof. If an exposed node v has ccover(v) > 0, then µ̄(v) = 0. By the first line of (2.2),

µ̄(v) equals aprob(v) · ν(v). Now consider an exposed leaf v such that ccover(v) = 0.
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Then cover(v) = 0. We write

µ̄(v) = prob(v) · L(v) = aprob(v) · pprob(v) · L(v)

By the second line of (2.2), this expression equals aprob(v) · ν(v). Finally, consider

an exposed internal node v such that ccover(v) = 0. Then vl and vr are exposed. By

induction, µ̄(vl) = aprob(vl) · ν(vl) and µ̄(vr) = aprob(vr) · ν(vr). Then

µ̄(v) = µ̄(vl) + µ̄(vr) = aprob(vl) · ν(vl) + aprob(vr) · ν(vr)

= aprob(v) · pprob(v) · (ν(vl) + ν(vr))

By the third line of (2.2), the expression equals aprob(v) · ν(v).

Corollary 2.3.4. ν(root) equals the complement of the expected measure of S.

By Corollary 2.3.4, one can report the expected measure of S simply by returning

the complement of ν(root). By maintaining ν() the same way we maintain µ() in

Section 2.3.1, we end up with a structure that solves the uncertain measure problem:

Theorem 2.3.5. The expected measure of a dynamic set of segments can be maintained

in O(1) query time, O(log n) insertion/deletion time and O(n) space.

2.4 Dynamic Expected Volume in d Dimensions

We now show how to maintain the expected volume of the union of a dynamic set

of uncertain boxes in d-space. The main idea is to adapt the framework of Overmars
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Figure 2.5: (a) A two-dimensional trellis formed by 5 boxes. (b) The shape with the
same area formed by moving strips.

and Yap’s solution for Klee’s problem to a dynamic and probabilistic setting [64]. In

the following three subsections, we explain this adaptation in detail.

2.4.1 The Trellis Structure

The first step is to apply Theorem 2.3.5 to a very special kind of d-dimensional

box arrangement called a trellis. (This is the same arrangement discussed in Chapter

1, Section 1.5.3.) A trellis in d dimensions is a rectangular region R and a collection

of boxes B that such that each box in B forms of an axis-parallel strip inside R. In

other words, no (d − 2)-dimensional face (a corner in two dimensions) of a box in B

intersects the interior of R. A two-dimensional example is shown in Figure 2.5a, where

each box is either a vertical or a horizontal strip.

The volume of a trellis is easy to compute efficiently. First consider the problem

in two dimensions. Suppose the horizontal and vertical side lengths of R are Lx and

Ly, respectively. Let Mx be the length of the portion of the x-interval of R covered by
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the vertical strips, and My the length of R’s y-interval covered by the horizontal strips.

Then it is easy to see that the area covered in R is Lx×Ly − (Lx−Mx)× (Ly −My).

(A visual proof is offered in Figure 2.5b.)

It follows that computing the area of a trellis reduces to maintaining Mx and My

separately, i.e., to solving two one-dimensional volume problems. In d > 2 dimensions,

the volume formula for a trellis generalizes easily to

∏
i

Li −
∏
i

(Li −Mi),

where the product index ranges from 1 to d, Li is the side length of R along the ith axis

and Mi is the sublength of Li that is covered by strips orthogonal to the ith axis [64].

To maintain the expected volume within a trellis for uncertain boxes, we use the

same formula, except that all the variables in the formula are replaced by their expec-

tations. Specifically, the formula for the d-dimensional case becomes

∏
1≤i≤d

Li −
∏

1≤i≤d

(Li − E(Mi))

where E(Mi) is the expected value of Mi. Note that Mi’s are independent. Then,

by linearity and multiplicativity of expectation over independent variables, the formula

correctly represents the expected volume.

It is clear that the expected volume in a trellis can be maintained in logarithmic

time per update by using d instances of anonymous segment tree, each maintaining Mi

for 1 ≤ i ≤ d. While several efficient solutions are known for maintaining the one-
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dimensional measure of non-probabilistic segments [30,45,73], they all seem quite spe-

cialized, focusing on a particular application. It is unclear whether they can be adapted

to our probabilistic setting without fairly complicated modifications. The anonymous

segment tree, on the other hand, offers a simple, and general, framework suitable for

probabilistic measure maintenance.

2.4.2 Overmars-Yap Partition

The second step is to partition the space hierarchically such that the leaves of the

partition contain trellis structures. This the same partition described in Section 1.5 of

Chapter 1. We therefore only briefly redescribe the partition in this chapter and omit

the proofs about its properties. We, however, warn the reader that we define some

additional terms while describing the partition in this section, which will be useful for

our complexity analysis.

The partition proceeds in d steps. Let us call a face of a box orthogonal to the ith

axis an i-face and the hyperplane it sits on an i-bound. In the first step of the partition,

we divide the space into regions called 1-slabs by cutting it with hyperplanes through

every
√
nth 1-bound of the boxes along the first axis. Consequently, O(

√
n) 1-slabs are

formed, each of which contains O(
√
n) 1-faces. In the second step, each 1-slab is split

into 2-slabs by hyperplanes perpendicular to the second coordinate axis. These hyper-

planes are introduced as follows: A hyperplane is drawn along every
√
nth 2-bound in

77



Chapter 2. The Union of Uncertain Boxes

B. Additionally, for each box B that has a 1-face inside the 1-slab, two hyperplanes are

drawn along both of its 2-bounds. Consequently, each 1-slab is partitioned into O(
√
n)

2-slabs, each of which intersects with O(
√
n) 1-faces and 2-faces of the boxes in B. In

the third step, each 2-slab is partitioned into O(
√
n) 3-slabs. This time, the splitting

hyperplanes pass along every
√
nth 3-bound and the 3-bounds of each box that has a

1-face or a 2-face intersecting the inside of the 2-slab. This partitioning strategy is con-

tinued until the dth step, in which each (d − 1)-slab is divided into O(
√
n) cells. The

following lemma, whose proof can be found in [64], summarizes the key properties of

this orthogonal partition.

Lemma 2.4.1. The orthogonal partition contains O(nd/2) cells such that each box of

B partially covers O(n(d−1)/2) cells, each cell partially intersects O(
√
n) boxes in B,

and the boxes partially overlapping a cell form a trellis.

We can now maintain the uncovered expected volume as follows. For each cell

C, we maintain uncovered volume of the boxes that partially intersects C restricted to

C. By using the trellis structure from Section 2.4.1, this is doable in logarithmic time

per update and constant time per query. Since a box partially intersects O(n(d−1)/2)

cells, we can update all trellis structures in O(n(d−1)/2 log n) time during a box inser-

tion/deletion.

The cells in a (d − 1)-slab form a linear sequence. We can track the boxes that

completely overlap the cells of a (d− 1)-slab using a structure called a slab tree, which
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is just an anonymous segment tree with trellises at its leaves. To be precise, the slab

tree is obtained by the following modifications to the anonymous segment tree:

• The keys stored in the tree correspond to the d-bounds bounding the cells in the

(d−1)-slab. Consequently, each leaf corresponds to a cell and each internal node

corresponds to the union of the cells represented by its descendant leaves. In this

case, cover(v) is defined to be the number of boxes that have probability 1 and

fully contain the cell of v. Similarly, prob(v) stands for the probability that no

box that has probability strictly less than 1 and fully contains the cell of v exists.

ccover() and pprob() values are maintained accordingly.

• We redefine ν(v) so that it represents an expected uncovered d-dimensional vol-

ume and also takes into account the volume inside the cells (trellises). In partic-

ular, we define ν(v) as:

ν(v) =



0 if ccover(v) > 0

pprob(v) · νT (v) if ccover(v) = 0 ∧ v is a leaf

pprob(v) · (ν(vl) + ν(vr)) if ccover(v) = 0 ∧ v has children

vl and vr
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where νT (v) is the expected uncovered volume in the trellis structure associated

with leaf v. We emphasize that the only change to the recursive definition of ν(v)

is in the second line.

By following the same proof strategy for Lemma 2.3.3 and Corollary 2.3.4, one can

easily prove the following lemma.

Lemma 2.4.2. ν(root) is the expected uncovered volume inside the (d− 1)-slab.

The uncovered measure of the whole space is the sum of ν(r) over all the roots

r of the (d − 1)-slab trees. Updating a slab tree with a box takes logarithmic time.

Since there are O(n(d−1)/2) (d−1)-slabs, updating all slab trees takesO(n(d−1)/2 log n)

during a box insertion/deletion. Also, when there is change in the volume of trellis, the

hosting slab tree can be updated in O(log n) time to reflect this change. Since a box

affects O(n(d−1)/2) trellises, the total cost of this update is also O(n(d−1)/2 log n). This

yields a total update time of O(n(d−1)/2 log n) for box insertions and deletions.

2.4.3 Dynamic Partition

We have a final missing ingredient: a dynamic version of the hierarchical orthog-

onal partition. At the high level, we maintain such a partition as follows. Recall that

Overmars and Yap’s partition is based on making slab cuts at the
√
nth coordinate in

each dimension. We relax this constraint by maintaining the sorted sequence of box
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coordinates in each dimension and cutting along a fairly stable—but not static—set of

slab boundaries. The slab boundaries for each dimension partition the corresponding

sorted coordinate sequence into buckets. We maintain the invariant that each bucket

contains at most 2
√
n coordinates, and any two adjacent buckets contain at least

√
n.

Whenever one of these invariants is violated, we split or merge buckets as necessary by

introducing or removing slab boundaries. This invalidates some trellises and slab trees;

we restore them by rebuilding. By a potential argument, it can be shown that the amor-

tized cost of all the rebuilding is also O(n(d−1)/2 log n) time per box insertion/deletion,

matching the direct cost of data structure updates. We now describe this algorithm in

depth.

The main idea is to use a different sequence of i-bounds instead of the consecutive

sequence of
√
nth i-bounds used in the original Overmars-Yap partition. Let B be

a set of n boxes in the plane. We are interested in maintaining a sequence Ki of i-

bounds for each 1 ≤ i ≤ d to replace the sequence of
√
nth i-bounds. Let I be the

set of i-bounds in B. At any time, Ki is a sorted sequence (k1, . . . , km) of distinct

i-bounds (not necessarily in I). The elements of Ki partition the i-bounds in I into a

sequence Qi = (Q1, . . . , Qm+1) of buckets. If we define sentinel i-bounds k0 = −∞

and km+1 =∞, then Qj = {x | x ∈ I ∧ kj−1 < x ≤ kj} for every j ∈ [1,m+ 1].

Moreover, we require that the following size conditions hold on Qi:

• For each bucket Qj , |Qj| ≤ 2
√
n+ 1.
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• For two adjacent buckets Qj and Qj+1, |Qj|+ |Qj+1| ≥
√
n.

The elements of Ki are not updated as long as the size conditions are satisfied. An

update is required in the following two cases:

• The size of a bucket Qj exceeds 2
√
n+ 1. This is most likely due to an increase

in the size of Qj as a result of a box insertion into B. However, this situation may

also arise when a box is deleted from B, reducing n. In either case, we resolve

the situation by inserting the median ofQj intoKi. Consequently, Qj is split into

two buckets of almost equal size.

• The total size of two adjacent buckets Qj and Qj+1 drops below
√
n. This might

be due to either a decrease in the size of one of these buckets or an increase in n.

In either case, we merge Qj and Qj+1 by removing kj from Ki.

To keep track of when one of these events occurs, we maintain all buckets in a max-

heap keyed on the bucket size, and we maintain all adjacent bucket pairs in a min-heap

keyed on the total size of the pair.

It is easily seen that |Ki| is O(
√
n) and the number of i-bounds in B between two

consecutive elements of Ki is O(
√
n). These properties are precise enough that we

can use Kis to define an orthogonal partition that is asymptotically equivalent to the

static partition that we described. This partition is defined as follows. The space is

divided into O(
√
n) 1-slabs by cuts along each 1-bound in K1. Each 1-slab is divided
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into O(
√
n) 2-slabs by cuts along each 2-bound in K2 and the 2-bounds of each box

that has a 1-face inside the 1-slab. Each 2-slab is divided into O(
√
n) 3-slabs by cuts

along each 3-bound in K3 and the 3-bounds of each box that has a 1-face or 2-face in

the 2-slab. This process continues until the (d − 1)-slabs are cut into cells. It can be

easily shown that this orthogonal partition satisfies Lemma 2.4.1.

Remark: In the remainder of this discussion, we also use the term d-slab to refer to a

cell of the partition.

During insertions and deletions of boxes, we rebuild portions of the partition to-

gether with the associated data structures whenever they become invalid. To make the

analysis of these rebuilding operations easier, we first present the following lemma.

Lemma 2.4.3. The following properties are true for the orthogonal partition.

1. There are O(ni/2) i-slabs.

2. An i-slab contains O(n(d−i)/2) cells and O(n(d−i−1)/2) (d− 1)-slabs for i < d.

3. A j-bound of a box possibly intersects the interior of O(n(i−1)/2) i-slabs where

j ≤ i.

Proof. Properties 1 and 2 are obvious from the structure of the orthogonal partition. To

deduce Property 3, we consider the partition level by level. Observe that each level in

the partition except the jth level, multiplies the number of slabs intersecting a particular
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j-bound by a factor of O(
√
n). Thus, at the ith level (for i ≥ j), a j-bound intersects

O(n(i−1)/2) i-slabs.

In our modifications to the partition, we make use of the following rebuilding oper-

ations:

• Split of an i-slab: In this operation, we split an i-slab R (possibly a cell) into

two new i-slabs R1 and R2 by cutting R through an i-bound. As part of this

operation, we destroy the trellis structures and the slab tree of R and construct

the trellises and the slab trees of R1 and R2 from scratch. By Lemma 2.4.3,

there are O(n(d−i)/2) trellis structures and O(n(d−i−1)/2) slab trees in an i-slab.

The costs of constructing a trellis and a slab tree are O(
√
n log n) and O(n log n)

respectively, thus, the total cost of this operation is O(n(d−i+1)/2 log n).

• Merge of two i-slabs: In this operation, we merge two neighboring i-slabs R1

and R2 that are separated by a i-bound into a single i-slab R. As part of this

operation, we destroy the trellis structures and the slab trees of R1 and R2 and

construct the trellises and the slab tree of R from scratch. Similar to the split

operation, the total cost is O(n(d−i+1)/2 log n).

The following list describes the events that invalidate our partition, along with the

modifications they cause and the costs they incur:
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1. For 1 ≤ j ≤ i ≤ (d − 1), a set R of i-slabs intersects a new particular j-face

in their interior as the result of the insertion of a box B. In this case, we further

partition each i-slab in R by introducing cuts through the (i + 1)-bounds of B.

As a result of each cut, an (i + 1)-slab is split into two. By Lemma 2.4.3, there

are O(n(i−1)/2) i-slabs intersecting the new j-face. Thus, the overall cost of this

event is 2×O(n(i−1)/2)×O(n(d−i)/2) = O(n(d−1)/2 log n).

2. For 1 ≤ j ≤ i ≤ (d − 1), a set R of i-slabs lose a particular j-face from their

interior as the result of the deletion of a box B. In this case, for each i-slab in

R, we remove the cuts through the (i + 1)-bounds of B. As a result of each cut

removal, two (i + 1)-slabs are merged into one. Similar to Event 1, the overall

cost is O(n(d−1)/2 log n).

3. An i-bound xi is inserted to Ki (where 1 ≤ i ≤ d). In this case, we split each

i-slab containing xi into two new i-slabs by cutting it through xi. By Lemma

2.4.3, there are O(n(i−1)/2) such i-slabs. Then, the overall cost is O(n(i−1)/2) ×

O(n(d−i)/2) = O(nd/2 log n).

4. An i-bound xi is deleted fromKi. In this case, we merge each neighboring pair of

i-slabs separated by xi. Similar to Event 3, the total time spent is O(nd/2 log n).

This implies that the worst-case cost of rebuilding is O(n(d−1)/2 log n) per update

if there are no changes in Ki for any i. However, each single change in Ki’s costs
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O(nd/2 log n) time in the worst-case. In the following lemma, we show that the fre-

quency of updates to Ki’s is so low that the amortized cost stays at O(n(d−1)/2 log n).

Lemma 2.4.4. The amortized cost of a box insertion or deletion in the relaxed partition

is O(n(d−1)/2 log n).

Proof. Recall that each change in Ki is due to either a bucket split or merge. Our

proof argument assigns a potential to each bucket in all Ki’s. In addition to the actual

O(n(d−1)/2 log n) time required by an insertion or deletion, each operation also con-

tributes a similar amount to the bucket potentials; the potential associated with a bucket

pays for the cost of bucket splits and merges.

The potential of a bucket Q is Φ(Q) = n(d−1)/2 log n ×
∣∣ |Q| − √n∣∣. When an

i-bound is inserted or deleted, potentials are affected in three ways: (1) |Q| changes by

1 for a single bucket; (2) n changes by 1 for all buckets; and (3) some buckets may be

split or merged. We now analyze the effect on the potential for all three cases.

In the discussion below, we use the notation ∆A to denote amount of change in

some quantity A after an update. Notice that if A is a function of n, i.e., A = f(n) for

some f , then ∆A is either f(n+1)−f(n) or f(n−1)−f(n). Then, |∆(nk)| = O(nk−1)

and |∆(log n)| = O(1/n). Also, recall that ∆(AB) = A∆B+B∆A+∆A·∆B. Hence

∆(n(d−1)/2 log n) = O(n(d−3)/2 + n(d−3)/2 log n+ n(d−5)/2) = O(n(d−3)/2 log n).
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Consider the first two cases. If a bound is inserted into or deleted from a bucket Q,

then ∆
∣∣ |Q| − √n∣∣ ≤ ∣∣∆|Q|∣∣+

∣∣∆(
√
n)
∣∣ = 1 +O(1/

√
n). Hence

∆Φ(Q) = ∆
(
n(d−1)/2 log n×

∣∣|Q| − √n∣∣)
= n(d−1)/2 log n×∆

∣∣|Q| − √n∣∣ + ∆
(
n(d−1)/2 log n

)
×
∣∣|Q| − √n∣∣

+ ∆
(
n(d−1)/2 log n

)
×∆

∣∣|Q| − √n∣∣
= n(d−1)/2 log n× (1 +O(1/

√
n)) + O(n(d−3)/2 log n)×O(

√
n)

+ O(n(d−3)/2 log n)× (1 +O(1/
√
n))

= O(n(d−1)/2 log n).

If n changes without affecting the contents of a bucket Q, then ∆
∣∣ |Q| − √n∣∣ ≤

|∆(
√
n)| = O(1/

√
n), and hence

∆Φ(Q) = ∆
(
n(d−1)/2 log n×

∣∣|Q| − √n∣∣)
= n(d−1)/2 log n×∆

∣∣|Q| − √n∣∣ + ∆
(
n(d−1)/2 log n

)
×
∣∣|Q| − √n∣∣

+ ∆
(
n(d−1)/2 log n

)
×∆

∣∣|Q| − √n∣∣
= n(d−1)/2 log n×O(1/

√
n) + O(n(d−3)/2 log n)×O(

√
n)

+ O(n(d−3)/2 log n)×O(1/
√
n)

= O(n(d−2)/2 log n).

The total number of buckets is O(
√
n), so the total potential change over all buckets

due to a single insertion or deletion is O(n(d−1)/2 log n). This change (if positive) is
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charged to the insertion/deletion operation. It does not affect the asymptotic cost of the

operation, since the direct data structure modifications take the same time.

Now consider the effect of a split or merge on a bucket’s potential. When a bucket

is about to be split, its size is greater than 2
√
n + 1, and so its potential is at least

n(d−1)/2 log n(
√
n+ 1) ≥ nd/2 log n. The size of the bucket is at most 2

√
n+ 2, so the

potential of each of the two buckets resulting from the split is at most n(d−1)/2 log n.

When two buckets are about to be merged, the sum of their sizes is less than
√
n, and

so the sum of their potentials is at least n(d−1)/2 log n × √n = nd/2 log n. The size of

the merged bucket is at least
√
n − 1, so its potential is at most n(d−1)/2 log n. In both

cases, the decrease in total potential is Ω(nd/2 log n). This potential change is used to

pay for the O(nd/2 log n) cost of the direct data structure manipulations to perform the

split or merge. It follows that the amortized cost of inserting or deleting a bound is

O(n(d−1)/2 log n).

We can now state our final theorem.

Theorem 2.4.5. The expected volume of the union of a dynamic set of n uncertain

boxes can be maintained with a data structure that uses O(n(d+1)/2) space, O(1) time

for query and O(n(d−1)/2 log n) amortized time for insertions and deletions of boxes.
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2.5 Conclusion

In this chapter, we considered the problem of maintaining the volume of the union

of n boxes in d-space when each box is known to exist with an arbitrary, but indepen-

dent, probability. We showed that, even in one dimension, computing the probability

distribution, namely the probability that the volume equals (or exceeds) a given value,

is NP-hard. On the other hand, we showed that the expected volume of the union can

be maintained, nearly as efficiently as in the static and deterministic case. Along the

way we introduced a data structure called anomymous segment tree that may be of in-

dependent interest in dealing with dynamic segment problems with abstract measures.

Our volume data structure was also implemented and evaluated experimentally [78].

In this evaluation, it has been shown that it performs as predicted by theory, and indeed

significantly outperforms a naı̈ve solution. On the other hand, the same experimental

evaluation highlighted a particular limitation of an Overmars-Yap type of approach.

The data structure is memory-intensive, which makes it unsuitable for large data sets.

Thus, an interesting future research question is to explore better space-time tradeoffs

that might yield scalable solutions to our dynamic and stochastic Klee’s problem.
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Chapter 3

A Discrete and Dynamic Version of

Klee’s Measure Problem∗

3.1 Introduction

In this chapter, we consider a discrete and dynamic version of Klee’s problem, in

which the volume of a box is defined as the cardinality of its intersection with a finite

point set P , and both the boxes and the points are subject to insertion and deletion. In

particular, we have a set of axis-aligned boxes B = {B1, B2, . . . , Bn}, a set of points

P = {p1, p2, . . . , pm} in d-space, and we wish to maintain the discrete measure of

∗This chapter is based on a joint work with John Hershberger and Subhash Suri. Parts of this chap-
ter appeared in the following publications: [79] (Publication available at http://2011.cccg.ca/
proceedings/main.pdf.)
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B with respect to P , namely, meas(B,P) = |P ∩ {⋃n
i=1 Bi}|, under insertion and

deletion of both points and boxes.

The problem is fundamental, and arises naturally in several applications dealing

with multi-attribute data. In databases, for instances, data records with d independent

attributes are viewed as d-dimensional points, and selection rules are given as ranges

over these attributes. A conjunction of ranges over d attributes is then equivalent to a

d-dimensional box. Given a set of selection rules, the problem of counting all the data

records that satisfy the union (namely, the disjunction) of all the rules is our discrete

measure problem. Similarly, one may ask for the set of records that fail to satisfy any

of the rules, and thus form the set of points “not covered” by the union of boxes.

Similarly, the management of firewall rules for network access can also be formu-

lated as a discrete measure problem. The data packets in the Internet are classified by

a small number of fields, such as IP address of the source and destination, the network

port number, etc. The managers of a local area network (LAN) use a number of “fire-

wall rules” based on these attributes to block some external services (such as ftp) from

their network. The discrete measure problem in this setting keeps track of the num-

ber of services blocked by all the firewall rules; conversely, one can keep track of the

number of services that become “exposed” by the deletion of a box.
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Problem Formulation and Our Results

We begin with a formal definition of the problem. A d-dimensional box B is the

Cartesian product of d one-dimensional ranges, namely B =
∏d

i=1[ai, bi], where ai

and bi are reals. The discrete measure of a single box B with respect to a finite set of

points P is the cardinality of the intersection P ∩B. The discrete measure of the set of

boxes B with respect to P , denoted meas(B,P), is the cardinality of P ∩ {⋃B∈B B}.

(Because a point may lie in multiple boxes, the discrete measure of B is not the sum

of the measures of the individual boxes.) In this chapter, we consider the problem of

maintaining the discrete measure under insertion and deletion of both points and boxes.

Specifically, we propose a data structure that supports modifying P through insertion

or deletion of a point, modifying B through insertion or deletion of a box, and querying

for the current discrete measure meas(B,P).

Despite its natural formulation, the problem appears not to have been studied in this

form. This may be partially attributed to the fact that the static version of the problem

is easy to solve using standard data structures of computational geometry: build a d-

dimensional version of a segment tree for the set of boxes, and then query separately

for each point to determine whether any box contains it, for a total of O(n logd n +

m logd−1 n) time. This approach, however, is inefficient when the set of boxes is dy-

namic, because each insertion or deletion can affect a large number of points, requiring

Ω(m) recomputation time per update.
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A technique of Chan [22] can be used to solve the dynamic problem. In [22], he

describes a data structure for maintaining a set of points and a set of hyperplanes in d-

space to answer queries of the form “does any of the points lie below the lower envelope

of the hyperplanes.” One can use this data structure in combination with standard range

searching structures and a dynamization technique by Overmars and van Leeuwen [63]

to solve our discrete measure problem so that point insertions and box updates require

O(log2m+ logd n) and O(m1− 1
d logm+ logd n) time respectively.11

Compared to this bound, the time complexity of our data structure is better by a

factor of logm. However, a more important contribution may be the simplicity of our

method and the fact that it solves the problem in a more direct way, making it more

appealing for implementation. Specifically, our result gives a dynamic data structure

for the discrete measure problem with the following performance: a box can be inserted

or deleted in time O(m1− 1
d + logd n); a point can be inserted in time O(logm+ logd n)

and deleted in timeO(logm). The data structure always updates its measure, so a query

takes O(1) time.

The data structure also solves the reporting problem in output-sensitive time. Specif-

ically, if k is the number of points in the union of the boxes, then they can be found in

O(k + k log m
k

) worst-case time. The same bound also holds if one wants to report the

points not contained in the union. Finally, we extend our results to a uncertain version

11Reducing box update time is possible at the expense of increasing the cost of point insertions and
vice versa.
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of the problem, in which each point and each box is associated with an independent

probability of being present. In this case, one can naturally define an expected discrete

measure, which is the expected number of points present that are covered by the union

of the boxes present. Our bounds for the uncertain case are the same as the deterministic

one.

Chapter Organization

In Section 3.2, we describe our solution for the dynamic version of the discrete

measure problem. In Section 3.3, we discuss the extension of our solution to reporting

queries and uncertain measure maintenance. We sum up with a conclusion in Section

3.4.

3.2 Maintaining the Discrete Measure

In the following discussion we assume that all the boxes in B and points in P have

distinct coordinates.12 Before we describe our dynamic data structure, it is helpful to

consider a solution for the static problem. Let B be a set of n boxes and P a set of

m points in d-space. For each point p ∈ P , we define its stabbing count, denoted

stab(p), as the number of boxes in B that contain p. The measure of a single point p,

12This assumption merely simplifies the presentation; one can use symbolic perturbation to break ties
between identical coordinates without affecting the result.
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meas(B, {p}), is 1 if stab(p) > 0 and 0 otherwise. One can easily see that the overall

discrete measure can be written as the sum of point measures; that is, meas(B,P) =∑
p∈P meas(B, {p}). The stabbing count of a point can be efficiently obtained using a

multi-level segment tree [72], which achieves the following performance bounds.

Lemma 3.2.1 ( [72]). The multi-level segment tree represents a set of n boxes in d-

space. The structure can report the stabbing count of any query point in O(logd−1 n)

time. It requires O(n logd−1 n) space and O(n logd n) preprocessing time for construc-

tion.

By building a multi-level segment tree and then querying it for the stabbing count

of each point in P , we can calculate the measure meas(B,P) for the static problem in

O(n logd n+m logd−1 n) time using O(n logd−1 n) space.

3.2.1 Invariants for Stabbing and Measure

The static solution described above loses its appeal in the dynamic setting because

each box insertion or deletion can invalidate the stabbing count of Ω(m) points. We

circumvent this problem by storing the stabbing counts indirectly, using an idea from

anonymous segment trees (presented in Chapter 2, Section 2.3), so that only a small

number of these indirect values need to be modified after a box update. We describe

the technique in general first, deferring its specialization for the efficient maintenance

of the discrete measure until later.

95



Chapter 3. A Discrete and Dynamic Version of Klee’s Measure Problem

Consider a balanced tree (not necessarily binary) whose leaves are in one-to-one

correspondence with the points of P . The point corresponding to a leaf v is denoted pv.

In order to represent the stabbing counts of the points, we store a non-negative integer

field σ(w) at each node w of the tree subject to the following sum invariant: for each

leaf v, the sum of σ(a) over all ancestors a of v (including v itself) equals stab(pv). By

assigning σ(v) = stab(pv) to each leaf v and σ(w) = 0 to all internal nodes w, we may

obtain a trivial assignment with the sum invariant. But, as we will see, the flexibility

afforded by these σ values allows us to update the stabbing counts of many points by

modifying only a few σ values. As an example, if a box covering all the points of

P were inserted, then incrementing the single value σ(root) by 1 suffices, where root

denotes the root of the tree.

We will maintain the discrete measure, meas(B,P), through the σ values. In par-

ticular, at each node v, we store a quantity µ̄(v) representing the number of points

that have a stabbing count of 0, considering only the information stored in the subtree

rooted at v. (The notation µ̄ is meant to suggest that it represents the complement of

the measure.) The quantity µ̄(v) is defined recursively using the σ values as follows:
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µ̄(v) =



0 if σ(v) > 0

1 if σ(v) = 0 ∧ v is a leaf

∑
w∈child(v) µ̄(w) if σ(v) = 0 ∧ v is an internal node

where child(v) represents the children of a non-leaf node v. The following lemma is

used to show that µ̄(root) is the number of points in P whose stabbing counts are 0.

Lemma 3.2.2. Let a node v be called exposed if for all ancestors a of v (excluding v)

σ(a) is zero. Then, for an exposed node v, µ̄(v) is the number of points in v’s subtree

whose stabbing counts are 0.

Proof. If σ(v) > 0, then µ̄(v) = 0 and stab(pw) is positive for all leaves w in v’s

subtree by the sum invariant, and thus the lemma holds. If v is a leaf with σ(v) = 0,

then stab(pv) = 0 and the lemma again holds. Otherwise, v is an internal node with

µ̄(v) = 0. It follows that v’s children are exposed. Let N0(v) be the number of points

in v’s subtree with zero stabbing count. Then, we can write by induction:

µ̄(v) =
∑

w∈child(v)

µ̄(w) =
∑

w∈child(v)

N0(w) = N0(v)

The lemma follows.

Corollary 3.2.3. µ̄(root) is the total number of points with zero stabbing count.
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Figure 3.4: The push-up operation on a node with two children.

Consequently, meas(B,P) = m− µ̄(root), and one can report meas(B,P) in O(1)

time.

We add one final constraint on σ values to achieve uniqueness, which also con-

tributes to the efficiency of our specialized structure. In particular, we push the σ values

as high up the tree as possible to enforce the following push-up invariant: at least one

child of every non-leaf node v has a σ value of 0. This specifies σ uniquely, as shown

by the following lemma.

Lemma 3.2.4. Let T be a tree representing a set of points P and their stabbing counts

as described above. Then there exists a unique configuration of σ values satisfying the

sum and the push-up invariants in T .

Proof. We first prove the existence of the desired configuration. Consider an arbitrary

configuration of σ values satisfying the sum invariant. (For instance, σ(v) = stab(pv)

for each leaf and σ(v) = 0 for each non-leaf.) We then apply the following push-

up operation at each non-leaf node v to revise its value: increment σ(v) by ∆ and

decrement σ(w) by ∆ for each child w of v, where ∆ = minw∈child(v) σ(w). (This
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is the same push-up operation presented in Chapter 2, Section 2.3.) See Figure 3.4.

This achieves the push-up invariant at v while preserving the sum invariant in the tree.

Repeated applications of the push-up operation from the leaves to the root produce a

configuration of σ values satisfying both invariants.

For the uniqueness of this configuration, consider any node v. Let parent(v) be the

parent of v and minstab(v) the minimum stabbing count in the subtree rooted at v. By

the push-up invariant, there is a path in the tree from v to a leaf w such that every node

on the path below v has σ = 0. Since this path clearly has the minimum possible sum of

σ values, the stabbing count stab(pw) must be the one achieving minstab(v). Because

all σ values on the path are zero, the sum of σ(a) over all ancestors a of v (including

v itself) equals stab(pw) = minstab(v). By this reasoning, σ(v) = minstab(v) −

minstab(parent(v)) for every node v except the root node. Therefore, the σ values are

directly and uniquely determined by the configuration of stabbing counts.

3.2.2 The Measure Tree and Dynamic Updates

In order to allow efficient insertion and deletion of boxes, and the corresponding

updates of the points’ stabbing counts, we organize P in a balanced tree that supports

efficient range queries. A k-d tree, where points are stored at the leaves, allows efficient

range queries, but is inefficient for insertion and deletion of points.13 The structure we

13There is also no easy way to implement our scheme using range trees because they contain multiple
copies of the points.
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Figure 3.5: A measure tree of 9 points on the plane.

propose, which we call a measure tree, is a variant of divided k-d trees [74], and allows

both efficient range queries and updates on the set of points. We note that the tree

described in this section has slightly slower amortized bounds but these can be easily

improved to achieve our main result as explained in Section 3.2.5.

We describe the measure tree in two dimensions for simplicity; the extension to d

dimensions is conceptually straightforward, but we defer those details for later. Given

a dynamic set of points P in the plane, we represent P as a two-level tree. The first

level consists of an upper tree that partitions the points of P into at most 2
√
m subsets

along the x-axis, each containing at most 2
√
m points, where m is the current size of

P . Each leaf of the upper tree acts as a root for a lower level tree that further partitions

the corresponding subset of points using their y-coordinates. These lower trees form

the second level of our tree. Figure 3.5 shows an example. Both levels of the tree

are organized using 2-3 trees in which each data element is stored in a single leaf.

Consequently, each leaf of the measure tree corresponds to a single point of P and we

can use our measure maintenance scheme to store σ and µ̄ values on the nodes. We now

discuss how to perform updates on the measure tree while preserving the invariants.
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Insertion or Deletion of a box B. Let us consider insertion first. We find a set

C of subtrees whose leaves correspond to the points covered by B. This is a range

query, where we first perform a one-dimensional range search on the upper tree to

locate the subsets of points that are completely or partially covered by the x-range of

B. Observe that at most two subsets are partially covered. We then search the lower

level trees corresponding to the partially covered subsets to find the points contained in

B. The leaves corresponding to these points are included in C. For each subset that is

completely covered by the x-range of B, we perform a one-dimensional range search

on the corresponding lower tree to find a set of maximal subtrees containing the points

that lie in B. These maximal subtrees are also included in C. It is straightforward to

show that the subtrees in C span the set of points covered by B and the total cost of the

range query is O(
√
m logm).

The insertion of B causes the stabbing count of each point contained in B to in-

crease by 1. We effect this by incrementing the σ value of the root of each subtree

in C by 1. This corrects the sum invariant in the tree, but may invalidate the push-

up invariant. We therefore apply push-ups on the nodes whose σ values are updated.

Since each push-up may introduce a violation of the push-up invariant at the parent, we

continue applying push-ups until all violations are resolved. Finally, we recompute µ̄

for all ancestors of nodes whose σ values changed. This recomputation is also done

bottom-up, since the µ̄ value of a node depends on the µ̄ values of its descendants. We
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note that both the push-ups and the recomputations of µ̄ values can be done as part of

the tree traversal of the range query. It follows that the total cost of the box insertion is

O(
√
m logm) time.

The handling of deletion is similar to insertion, except that we decrement the σ

value of the root of each subtree found by the range query. The time complexity is

O(
√
m logm), as for insertion. Decrementing the σ’s may cause some values to drop

below zero, but the push-up operations eliminate these negative values. In particular,

observe that a push-up at a node v restores not only the push-up invariant but also the

non-negativity of v’s children. To see that the final value of σ(root) is non-negative,

imagine a root-to-leaf path (as in the proof of uniqueness for Lemma 3.2.4) such that σ

is zero for all nodes on the path except root. The path ends at a leaf v such that stab(pv)

equals σ(root), and so it follows that σ(root) is non-negative.

Insertion or Deletion of a point p. When inserting a point p, we search the upper

tree with the x-coordinate of p to find the lower tree in which p should be inserted, and

then insert p using the standard 2-3 tree insertion algorithm. This creates a new leaf

v with pv = p. We need to know the stabbing count of p in order to initialize σ(v)

correctly. For the moment, let us assume that we know stab(p)—see Lemma 3.2.7—

and focus on the update of the tree. In order to preserve the sum invariant, we set σ(v)

to stab(p) − Σ, where Σ is the sum of σ(a) over all strict ancestors a of v. If σ(v) is
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Figure 3.6: Push-down in a merge.

less than 0, we apply push-ups to v and all of its ancestors to push the negativity to the

root, where it is canceled out. The 2-3 tree insertion may split one or more ancestors

of v, and during those splits, the σ values of the resulting nodes are set to the original

node’s σ value, thereby preserving the sum invariant. After the split, we apply push-

ups on the resulting nodes to re-establish the push-up invariant. Altogether, O(logm)

splits and push-ups are performed, and so the cost of the insertion is O(logm). The

insertion might cause the size of the lower tree to exceed 2
√
m, but this is discussed in

Section 3.2.3.

When a point p is deleted, we locate the lower tree containing it and simply delete

the leaf corresponding to p, and restructure the tree to reestablish the balance of the 2-3

tree. The sum invariant is unaffected by the deletion, but we may need to apply push-

ups to the ancestors of v to restore the push-up invariant. The deletion may also cause

2-3 tree merge or redistribution operations, and to preserve the sum invariant during

these operations, we push the σ values of the participating nodes down to their children

(see Figure 3.6). After the operation, push-ups are applied on these nodes to restore
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the push-up invariant. If the lower tree becomes empty as a result of the deletion, we

simply delete it and apply the same deletion algorithm on the upper tree. Due to the

decrease in the value of m, the sizes of some upper or lower trees may exceed 2
√
m;

we deal with this in Section 3.2.3.

3.2.3 Complexity Analysis

We use two types of operations to ensure that the upper and the lower trees do not

exceed their size thresholds. First, when a lower tree’s size exceeds 2
√
m, we split it

into two new lower trees of equal size, destroying the original tree and constructing

the new trees from scratch. During this process, we traverse the original tree to obtain

the stabbing counts of the points and use those to construct the new trees. This split

operation takesO(
√
m) time since the y-order of the points is known. Second, we avoid

violating the upper tree’s threshold by periodically rebuilding the entire measure tree.

This reconstruction creates a lower tree for each set of d√m e points along the x-axis

(except perhaps the last one in the sequence, which may be smaller). Consequently, the

size of the upper tree is at most
√
m. The reconstruction takes O(m logm) time. (It

can be done in O(m) time if we maintain the x- and y-orders of the points separately.)

We determine when to do the reconstruction as follows. Assume that the most recent

reconstruction of the tree was done when m = m0. We reconstruct the tree after 1
5
m0
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point insertions or deletions. As the following two lemmas show, this ensures that the

upper tree does not exceed its threshold.

Lemma 3.2.5. Consider a measure tree constructed for m0 points, where m0 is suf-

ficiently large. Then a newly constructed lower tree T requires at least 1
2

√
m0 point

insertions into T before T splits.

Proof. T has at most
√
m + 1 leaves when it is constructed and at least 2

√
m leaves

when it is split. Moreover, m satisfies 4
5
m0 ≤ m ≤ 6

5
m0. Consequently, there must be

at least (2
√

4
5
m0−(

√
6
5
m0 +1)) point insertions into T before it splits. For sufficiently

large m0, this quantity is lower-bounded by 1
2

√
m0. The lemma follows.

Lemma 3.2.6. The size of the upper tree is at most 2
√
m.

Proof. When the tree is constructed, it contains at most
√
m0 lower trees. By Lemma

3.2.5, the number of additional lower trees constructed during the lifetime of the tree is

at most 1
5
m0/(

1
2

√
m0) = 2

5

√
m0. Thus, the size of the upper tree at any time is at most

7
5

√
m0 ≤ 7

5

√
5
4
m ≤ 2

√
m.

Next, we discuss how to initialize the stabbing count of a point when it is first in-

serted. We enable this by maintaining a separate dynamic multi-level segment tree [36],

which provides the following functions dynamically.

Lemma 3.2.7 ( [36]). The dynamic multi-level segment tree represents a dynamic set of

n boxes in d-space. The structure usesO(n logd−1 n) space and can report the stabbing
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count of any query point in O(logd n) time. It supports insertion or deletion of boxes in

O(logd n) time apiece.

Putting together these pieces, we obtain our main result in two dimensions.

Theorem 3.2.8. We can maintain the discrete measure in two-dimensional space using

O(n log n+m) space, with constant time measure queries, O(log2 n+
√
m logm) time

for insertion or deletion of a box, O(log2 n + logm) time for a point insertion, and

O(logm) time for a point deletion time. (The logm term in the bounds is amortized.)

Proof. We use the measure tree along with a two-dimensional dynamic segment tree.

The bound on the space complexity follows because the measure tree requires linear

space and the multi-level segment tree requires O(n log n) space by Lemma 3.2.7.

The query complexity is obviously constant. The insertion or deletion of a box takes

O(
√
m logm) time for the measure tree and O(log2 n) time for the segment tree. The

cost of inserting or deleting a point is O(logm) for the measure tree if there is no re-

construction of a lower tree or the whole measure tree. Reconstruction of the measure

tree costs O(m logm). We charge the cost of this construction to the Ω(m) point up-

dates that must precede it, which gives us an amortized cost of O(logm) per update.

The reconstruction of a lower tree costs O(
√
m). One can easily show that Ω(

√
m)

point insertions precede the construction, which gives us an amortized cost of O(1).
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Finally, we do a stabbing count query costing O(log2 n) time when we insert a point.

This completes the proof.

3.2.4 Extension to Higher Dimensions

The measure tree naturally extends to higher dimensions, as a d-level tree, with

each level partitioning the points along one of the coordinate axes. The tree at the top

level partitions the set of points into at most 2m1/d subsets, each of which is partitioned

into at most 2m1/d subsets by a second level tree. This partitioning continues through

d levels The measure is maintained using the σ and µ̄ values, as in two dimensions.

The box and point insertions/deletions are performed the same way they are done

in two dimensions. The extension of point updates are straightforward, and they take

O(logm) time per operation (aside from the initialization of stabbing counts and the

reconstruction operations which will be discussed shortly). For box insertions and dele-

tions, the idea is again to do a range query to find a set C of subtrees whose leaves

correspond to the points covered by the box. Then, we simply increment or decrement

(depending on whether it is an insertion or deletion) σ value of the root of each subtree

in C, and perform the necessary updates to maintain the sum and push-up invariants.

The following lemma summarizes the cost of a box update.

Lemma 3.2.9. The cost of a box insertion or deletion in the d-dimensional measure

tree is O(m1− 1
d logm).
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Proof. The cost of a box update is dominated by the range query to find the node set

C. All additional modifications happen on the paths traversed by the range query and

thus does not increase complexity. To analyze the complexity of the range query, we

examine it level by level. At the top level, we have the upper tree that subdivides the set

of points into disjoint subsets along the first coordinate axis. Each subset is represented

by a subtree at the second level. For at most two of these point subsets, the box covers

the subset partially along the first coordinate axis. Consequently, the corresponding two

subtrees (which are of size O(m1− 1
d )) may need to be traversed completely. For each

subset that is completely covered by the box along the first coordinate axis, the range

query performs a subquery in the corresponding subtree. This query is equivalent to

performing a range query in a (d− 1)-dimensional measure tree with O(m1− 1
d ) nodes.

This process recursively traverses down the tree and is finalized at the dth level. It is

easy to see that the range query in a single subtree in the dth level takes O(logm).

Let F (m, d) be the cost of the range query on a d-dimensional measure tree with m

points. Then, we can write the following recurrence:

F (m, d) =


O(logm) if d = 1

O(m1− 1
d ) +m

1
dF (O(m1− 1

d ), d− 1) if d ≥ 2

This easily solves to F (m, d) = O(m1−1/d logm). The lemma follows.
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All reconstruction procedures are natural extensions of their two-dimensional coun-

terparts. The initial tree size is at most dm1/de at all levels; a tree is split when its size

becomes larger than 2m1/d. Moreover, we reconstruct the whole tree after each Cm0

point insertions and deletions, where C can be any constant satisfying C1/d < 1
4
, for

instance C = 1
5d

. The following two lemmas show that the tree reconstructions are

frequent enough that the size of the upper tree is at most 2m1/d at all times.

Lemma 3.2.10. Consider a measure tree constructed for m0 points. Then a newly

constructed inner tree T requires at least (1 − 3C1/d)m
1/d
0 leaf splits (splits of child

trees) before T itself splits.

Proof. T has at most (m1/d + 1) leaves when it is constructed and at least 2m1/d leaves

when it is split. Moreover, at any time, m satisfies (1 − C)m0 ≤ m ≤ (1 + C)m0.

Consequently, the following is a lowerbound on the number of leaf splits required to

split T :

2 ((1− C)m0)1/d − ((1 + C)m0)1/d − 1 = 2(1− C)1/dm
1/d
0 − (1 + C)1/dm

1/d
0 − 1

≥ 2(1− C1/d)m
1/d
0 − (1 + C1/d)m

1/d
0

= (1− 3C1/d)m
1/d
0

The lemma follows.

Lemma 3.2.11. The size of the upper tree is at most 2m1/d.
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Proof. By Lemma 3.2.10, when the tree is constructed form0 points, it requires at least

(1− 3C1/d)m
1/d
0 point insertions to a dth level inner tree to split. Similarly, the split of

a tree at the (d − 1)th level requires the split of (1 − 3C1/d)m
1/d
0 inner trees at the dth

level. This implies that
(

(1− 3C1/d)m
1/d
0

)2

points insertions are necessarry to split an

inner tree at level (d − 1). Working the same logic all the way up to the top level, we

see that it requires
(

(1− 3C1/d)m
1/d
0

)d
point insertions for the upper tree to exceed its

size threshold of 2m1/d. By definition of C, this is more than Cm0 and thus the tree is

reconstructed before the upper tree can exceed its threshold. The lemma follows.

Theorem 3.2.12. We can maintain the discrete measure in d dimensions, for d ≥

2, using O(n logd−1 n + m) space, with constant time measure queries, O(logd n +

m1− 1
d logm) time for insertion or deletion of a box, O(logd n + logm) time for inser-

tion of a point, and O(logm) time for the deletion of a point. (The logm term in the

bounds is amortized.)

Proof. We use the measure tree along with a d-dimensional dynamic segment tree.

The bound on the space complexity follows because the measure tree requires linear

space and the multi-level segment tree requires O(n logd−1 n) space by Lemma 3.2.7.

The query complexity is obviously constant. The insertion or deletion of a box takes

O(m1− 1
d logm) time for the measure tree and O(logd n) time for the segment tree. The

cost of inserting or deleting a point is O(logm) for the measure tree if there is no

reconstruction of a subtree or the whole measure tree. Reconstruction of the whole
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measure tree costs O(m logm). We charge the cost of this construction to the Ω(m)

point updates that must precede it, which gives us an amortized cost of O(logm) per

update. The reconstruction of a subtree at the ith level (due to leaf split in its parent tree)

costs O(m1− i−1
d logm). By Lemma 3.2.10, one can easily show that Ω(m1− i−1

d ) point

insertions precede the reconstruction, which gives us an amortized cost of O(logm).

Finally, we do a stabbing count query costing O(logd n) time when we insert a point.

This completes the proof.

3.2.5 Further Improvements

The amortized bounds of our structure can be converted to worst case bounds, using

a general technique called global rebuilding [62]. The idea, in brief, is to spread out the

process of subtree reconstruction over time, operating on a shadow copy of the main

data structure and then swapping in the result when the reconstruction is finished.

Finally, the term m1− 1
d logm in box update bounds can be improved to m1− 1

d by

using an optimized version of the measure tree. For instance, in two dimensions, the

partitioning parameter can be tuned to achieve O(
√
m + log2 n) time for inserting or

deleting a box, by mimicking the construction of [51].
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3.3 Extensions

3.3.1 Reporting Queries

In some applications, it is useful to report explicitly the points covered (or uncov-

ered) by the union of boxes. Our structure can be used to answer such queries in

output-sensitive time. In this section, we describe how this can be done.

We report the covered (uncovered) points in an output-sensitive manner simply by

traversing the tree top-down, visiting each node whose subtree contains at least one

point to be reported. These active nodes can be identified as follows: When reporting

the covered points, a node v of the measure tree is active if it has an ancestor a with

σ(a) > 0 or µ̄(v) < leaves(v), where leaves(v) is the number of leaves below v. (The

quantity leaves(v) is easily maintained.) When reporting the uncovered points, a node

v is active if µ̄(v) > 0 for v and all its ancestors. In either case, we can decide whether

a node is active in constant time during the tree traversal.

To analyze the total cost of the traversal, we first introduce the following lemma,

which is an extension of a result on perfectly balanced trees [57] to 2-3 trees.

Lemma 3.3.1. Let L be a set of k leaves in a 2-3 tree with M leaves. Then the total

number of nodes v such that v has a descendant leaf in L is O(k + k log M
k

).

Proof. Let T be a 2-3 tree with M leaves and let L be a set of k leaves in T . We call

a leaf v selected if v ∈ L. Let T (L) denote the subtree of T consisting of the selected
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nodes and all their ancestors. We want to bound |T (L)|. Assume that L is chosen to

maximize |T (L)|. We now make a series of deductions.

1. Call an internal node v in T (L) an i-node if it has i children in T (L). Then the

highest 1-node is not higher than the lowest 2-node or 3-node.

Proof. Suppose to the contrary that v is a 2-node or 3-node that is lower than a

1-node w, that is, height(v) < height(w). Let v′ be a selected descendant leaf

of v. One of w’s children, say w′, has no selected leaves in its subtree. Let w′′ be

a descendant leaf of w′. Since T is a 2-3 tree, v′ and w′′ have the same depth. We

can increase |T (L)| by at least (height(w)− height(v)) by removing v′ from L

and inserting w′′ into L. This contradicts the assumption that L was chosen to

maximize |T (L)|.

2. On the path from the root to a leaf in T (L), all 1-nodes are below all 2-nodes and

3-nodes.

Proof. This follows from Property 1.

3. The number of 2-nodes and 3-nodes is at most k − 1.

Proof. Each 2- or 3-node corresponds to one step in a hierarchical partition of

the set L into singletons, so there can be at most k − 1 of them.
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4. Let T ′ be a 2-3 tree formed by pruning some nodes of T such that all nodes of

T (L) are in T ′ and every internal node in T ′ has two children except the 3-nodes

of T (L). Let M ′ denote the number of leaves in T ′. Then, the size (number of

leaves) of each maximal subtree of T ′ containing exactly one selected leaf is at

most 2M ′
k

.

Proof. The maximal subtree containing a single selected leaf v is the subtree

rooted at the highest 1-node ancestor of v (or v itself if it has no 1-node parent).

By Property 1, the height difference between two such maximal subtrees is at

most 1. Consequently, since all such maximal trees are complete binary trees, the

ratio between the sizes of two maximal subtrees is at most 2. Moreover, there is

at least one maximal subtree whose size is at most M ′/k. It follows that every

maximal subtree has size at most 2M ′
k

.

5. The total number of 1-nodes is at most k log2
2M
k

.

Proof. Consider a selected leaf v. Let Tv be the maximal subtree of T ′ containing

v as its only selected leaf. Since Tv is binary and by Property 4, the height of Tv

is at most log2
2M ′
k

. This number also bounds the number of 1-node ancestors

of v. By summing over all selected leaves, we get k log2
2M ′
k
≤ k log2

2M
k

as an

upper bound on the total number of 1-nodes.
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By Properties 3 and 5, the number of internal nodes in T (L) is at most (k − 1) +

k log2
2M
k

. It follows that |T (L)| is O(k + k log M
k

).

We continue with the following mathematical property.

Lemma 3.3.2. Let m, k, m1, m2, k1 and k2 be positive real numbers such that m1 +

m2 = m and k1 + k2 = k. Then, k log m
k
≥ k1 log m1

k1
+ k2 log m2

k2
.

Proof. By simple calculus, the function f(x) = x log m1

x
+ (k − x) log m2

x
attains its

maximum value when x =
(

m1

m1+m2

)
k. This implies that the expression k1 log m1

k1
+

k2 log m2

k2
has its maximum value when k1 =

(
m1

m1+m2

)
k, in which case m1

k1
= m2

k2
= m

k
.

Then, we can write

k1 log
m1

k1

+ k2 log
m2

k2

≤ k1 log
m

k
+ k2 log

m

k
= k log

m

k

The lemma follows.

Corollary 3.3.3. Let m and k be positive real numbers. Also, let m1, . . . ,mt and

k1, . . . , kt be positive real numbers such that
∑
mi = m and

∑
ki = k. Then,

k log m
k
≥∑ ki log mi

ki
.

We now prove the following lemma.

Lemma 3.3.4. Let L be a set of k leaves in a d-dimensional measure tree of m points.

Then the total number of nodes v such that v has a descendant leaf in L is O(k +

k log m
k

).
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Proof. Suppose that T is a measure tree of m points. Let L be a set of k selected leaves

of T . Let T (L) be the subtree consisting of L and all ancestors of the leaves in L.

Notice that we want to bound |T (L)|.

In order to simplify the math in the remaining of the proof, we assume that k <

m/e, where e is the natural logarithm base. Notice that if k ≥ m/e, then both |T | and

|T (L)| are clearly O(k) and thus |T (L)| satisfies the bound.

To show that |T (L)| = O(k + k log m
k

), we argue that the size of T (L) restricted to

each of the d levels of the measure tree is O(k + k log m
k

). (Recall that we treat d as a

constant in our analyses.) In particular, let {T1, . . . , Tt} be the set of inner trees in the

ith level such that each Tj has some overlap with T (L), i.e., |Tj ∩ T (L)| ≥ 1. The size

of T (L) constrained to the ith level is simply
∑ |Tj ∩ T (L)|.

Recall that each inner tree is a 2-3 tree. Let mj be the number of leaves of Tj and

kj be the number of leaves in Tj ∩ T (L). By Lemma 3.3.1, |Tj ∩ T (L)| = O(kj +

kj log
mj
kj

). Clearly,
∑
kj ≤ k and

∑
mj ≤ m. The function f(x, y) = x + x log y

x
is

increasing with respect to y, and also with respect x if x < y/e. Then, based on the

assumption that k < m/e and Corollary 3.3.3, the following is a bound for the size of
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T (L) constrained to the ith level:

∑
|Tj ∩ T (L)| =

∑
O(kj + kj log

mj

kj
)

≤ O

(∑
kj +

∑
kj × log

∑
mj∑
kj

)
≤ O(k + k log

m

k
)

The lemma follows.

It follows that the reporting k points takes O(k + k log m
k

) traversal steps, proving

the following theorem.

Theorem 3.3.5. A reporting query can be answered in O(k+ k log m
k

) time, where k is

the size of the output.

3.3.2 Uncertain Discrete Measure

The recent proliferation of data mining applications has created an urgent need to

deal with data uncertainty, which may arise because the mining algorithms output prob-

ability distributions over an output space, or because attributes whose values are not

explicitly known are modeled with a discrete set of probabilistic values. This motivates

a natural probabilistic extension of our discrete measure problem, in which both the

underlying set of points P and the set of boxes B are associated with independent prob-

abilities. Specifically, each point p in P occurs with probability πp and each boxB in B
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occurs with probability πB. The probabilities are independent, but otherwise can take

any real values. A natural problem in this setting is to compute the expected size of the

discrete measure—that is, how large is meas(B,P) on average for a random sample of

boxes and points drawn from the given probability distribution?

Our measure maintenance algorithm is adapted to the uncertain problem as follows.

We represent the measure as the difference between the expected number of points that

are present and the expected number of those points that remain uncovered by the boxes

that are present. This difference is the desired expected measure. The expected number

of points present can be written simply as
∑

p∈P πp. In order to maintain the expected

number of these points that remain uncovered, we proceed as follows. Let prob(p)

denote the probability that p is uncovered by the set of boxes present in B. We can

write prob(p) as the product of the complements of the existence probabilities of the

boxes that cover p, namely, prob(p) =
∏

B∈B∧ p∈B (1− πB). The expected number

of uncovered points can then be written as
∑

p∈P prob(p)πp. We maintain this quantity

with a measure tree in which the auxiliary information (σ and µ̄) is modified in the

following way.

Each σ value is a real number between 0 and 1. We maintain the product invariant

that the product of σ(a) over all ancestors a of a leaf v equals prob(pv). (Cf. the sum

invariant of Section 3.2.) The quantity µ̄(v) is used to represent the expected number

of uncovered points, considering only the information stored in the subtree of v. In
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particular,

µ̄(v) =


σ(v)πpv if v is a leaf

σ(v)
∑

w∈child(v) µ̄(w) if v is an internal node

We now show that µ̄(root) is the expected number of uncovered points in a random

sample of the instance.

Lemma 3.3.6. For a node v, let Pv be the set of points which are stored in the subtree

v. Also, let σ∗(v) be the product of the σ values of the ancestors of v. Then, σ∗(v)µ̄(v)

is the expected number of uncovered points in Pv, i.e., σ∗(v)µ̄(v) =
∑

p∈Pv prob(p)πp.

Proof. By induction. If v is a leaf, then σ∗(v)µ̄(v) = σ∗(v)σ(v)πpv = prob(pv)πpv by

the product invariant. If v is an internal node, we can write

σ∗(v)µ̄(v) = σ∗(v)σ(v)
∑

w∈child(v)

µ̄(w)

=
∑

w∈child(v)

σ∗(v)σ(v)µ̄(w)

=
∑

w∈child(v)

σ∗(w)µ̄(w)

=
∑

w∈child(v)

∑
p∈Pw

prob(p)πp

=
∑
p∈Pv

prob(p)πp
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Corollary 3.3.7. µ̄(root) is the expected number of uncovered points.

The insertion of a box B is performed using a range search similar to that in the

non-stochastic setting. The σ values of the roots of the reported subtrees are multiplied

by (1 − πB) to preserve the product invariant. The deletion of a box is done similarly,

except that the σ values are divided by (1− πB).

The push-up invariant in the uncertainty setting requires that at least one child of

each internal node has a σ value of 1. To perform a push-up operation on a node v,

we multiply σ(v) by ∆ and divide σ(w) by ∆ for all children w of v, where ∆ =

maxw∈child(v) σ(w). Push-downs are performed analogously.

We note that when a point p is inserted, we need to know prob(p). (This is similar

to stab(p) in the non-stochastic setting.) The multi-level segment tree can easily be

modified to answer this kind of query.

One technical issue is that a division by zero may occur if B contains boxes with an

existence probability of 1. We work around this problem by symbolic perturbation, by

treating each box with probability 1 as if it had a probability of (1−ε), for an arbitrarily

small ε > 0. We then represent each σ value symbolically with an expression rεt where

r is a real number and t is a nonnegative integer. When we evaluate µ̄(v) at a node v, if

σ(v) contains any positive power of ε, then µ̄(v) = 0. With these adaptations, we can

deduce the result given in Theorem 3.3.8.
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Theorem 3.3.8. The d-dimensional discrete measure problem on uncertain boxes and

points can be solved with a data structure that requires O(n logd−1 n+m) space, O(1)

query time, O(logd n+m1− 1
d ) time for insertion or deletion of a box, O(logd n+logm)

time for a point insertion and O(logm) time for a point deletion.

3.4 Conclusion

We introduced a discrete measure problem, and presented a data structure that sup-

ports dynamic updates to both the set of points and the set of boxes. The queries for

the current measure take constant time, the updates to the set of points take polyloga-

rithmic time, while updates to the set of boxes take time polylogarithmic in the number

of boxes and sub-linear in the number of points. The data structure permits output-

sensitive enumeration of the points covered by the union of the boxes, and also lends

itself to a stochastic setting in which points and boxes are present with independent, but

arbitrary, probabilities.

Our work leads to a number of research problems. First, can the update bounds

be improved? Second, is there a trade-off between the update time for boxes and the

update time for points? In particular, can one achieve polylogarithmic complexity in

both n and m?

121



Chapter 4

Convex Hulls under Uncertainty:

Membership Probability∗

4.1 Introduction

In this chapter, we present our first set of results on convex hulls under uncertainty.

The focus of this chapter is computing the membership probability, which is the proba-

bility that a given point is contained in the convex hull of an uncertain set of points. Our

work on convex hulls under uncertainty also spans the next chapter, where we consider

the problem of computing the most likely convex hull, which is the mode of the convex

hull random variable. We start this chapter with a brief information on convex hulls.

∗This chapter is based on a joint work with Pankaj K. Agarwal, Sariel Har-Peled, Subhash Suri and
Wuzhou Zhang. Parts of this chapter are under preparation for submission.
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The convex hull is a fundamental structure in mathematics and computational ge-

ometry. Given a set of points P in d-space, the convex hull of P is the minimal convex

polytope that contains all points in P. Convex hulls have applications in a variety of

areas including but not limited to computer graphics, image processing, pattern recogni-

tion and statistics. Owing to their importance in practice, the algorithms for computing

convex hulls are well-studied. In two and three dimensions, there are algorithms to

compute the convex hull of n points in O(n log n) time [46, 65] or even in O(n log h)

output-sensitive time where h is the complexity of the hull [21,26,55]. In d dimensions,

for d > 3, the best algorithm takes O(nbd/2c) time in the worst-case [25], but there also

exist faster output-sensitive algorithms [61, 67]. In all dimensions, the algorithms are

optimal in the worst-case for algebraic decision tree and algebraic computation tree

models of computation [11, 25].

In many applications, such as sensor databases, location-based services or computer

vision, the location and sometimes even the existence of the data is uncertain, but statis-

tical information can be used as a probability distribution guide for data. This raises the

natural computational question: what is a robust and useful convex hull representation

for such an uncertain input, and how well can we compute it? We explore this prob-

lem under two simple models where both the location and the existence (presence) of

each point are described probabilistically, and study basic questions such as what is the

123



Chapter 4. Convex Hulls under Uncertainty: Membership Probability

probability that a query point lies inside the convex hull, or what does the probability

distribution of the convex hull over the space look like.

Uncertainty Models

We focus on two models of uncertainty: unipoint and multipoint. In the unipoint

model, each input point has a fixed location but it only exists probabilistically. Specif-

ically, the input P is a set of pairs {(s1, π1), . . . , (sn, πn)} where each si is a point in

d-space and each πi is a real number in the range (0, 1] denoting the probability of si’s

existence. The existence probabilities of different points are independent.

In the multipoint model, each point probabilistically exists at one of multiple pos-

sible sites. Specifically, P is a set of pairs {(S1,Π1), . . . , (Sm,Πm)} where each Si

is a set of points and each Πi is a set of reals in the range (0, 1], with |Si| = |Πi|.

The set Si = {s1
i , . . . , s

|Si|
i } describes the possible sites for the ith point of P and the

set Πi = {π1
i , . . . , π

|Πi|
i } describes the associated probability distribution. In an ex-

periment, the ith point of P is located at sji with probability πji . The probabilities πji

correspond to disjoint events and therefore sum to at most 1. By allowing the sum to

be less than one, this model also accounts for the possibility that the point does not ex-

ist (i.e. the null location)—thus, the multipoint model strictly generalizes the unipoint

model. In the multipoint model, the number of points in P is referred by m and we use

n to refer to the total number of possible sites, i.e., n =
∑

i |Si|.
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The Results

The main results of this chapter can be summarized as follows.

1. We show that the membership probability, namely, the probability of a query

point being inside the convex hull, can be computed inO(n log n) time for d = 2,

both in the unipoint and the multipoint models.

2. We show that the membership probability can be computed in O(nd) time for

d ≥ 3, both in the unipoint and the multipoint models, given that all points

including the query point are in general position.

3. We describe a structure called the probability map, denoted M(P), which decom-

poses Rd into cells so that all points in a single cell have the same membership

probability. We show that M(P) has size O(nd
2
) . The map can be computed in

optimal O(n4) time for d = 2.

Previous Work

In the multipoint uncertainty model, numerous results have been obtained on nearest

neighbor queries, top-k queries, range queries, clustering, ranking, etc [1, 3, 4, 7, 13,

28, 29, 33, 47, 49], in both the database and the computational geometry community;

see [6, 34] for surveys on uncertain data. Some problems become indeed intractable

in the presence of uncertainty, and one has to turn to approximation. Suri et al. [50]
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showed that, even in the unipoint model, it is NP-hard to compute the probability that

the closest pair distance is less than a given value l, even in R2 and L2 norm, and they

gave a linear-space data structure with O(log n) query time to compute the expected

distance of a given query point to its (1 + ε)-approximate nearest neighbor when the

dimension d is a constant.

The convex hull problem over uncertain data has received some attention very re-

cently. Zhao et al. investigated the problem of computing the probability of each uncer-

tain point lying on the convex hull [82], where they aimed to return the set of (uncertain)

input points whose probability of being on the convex hull is at least some threshold.

Some scientists have also considered geometric problems on “imprecise” objects:

each object, such as a point, can be anywhere inside a simple geometric region [18, 19,

58,59,60,75]. Convex hull was examined in the imprecise point model [58], and prob-

lems like (approximate) largest convex hull and smallest convex hull were investigated.

However, we emphasize that this line of research looks at the worst-case behavior, and

not the stochastic behavior, which is the main focus of our work. Another line of re-

search has focused on uncertainty caused by the finite machine precision [53, 66, 77].

The goal there is to achieve robustness under bounded precision, and not to compute

structures that are most representative under a probability distribution.
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Chapter Organization

In Section 4.2, we describe our algorithm for the membership probability in two

dimensions. This is followed by our algorithm for higher dimensions in Section 4.3.

We investigate probability maps in Section 4.4. Finally, we sum up with a conclusion

in 4.5

4.2 Membership Probability in the Plane

In this section, we describe how to compute the convex hull membership probability

of a given point with respect to a given uncertain point set in the plane. For simplicity,

we assume that the input is non-degenerate, meaning that all possible point sites, in-

cluding the query point q, are in general position: no two sites have the same coordinate

along any dimension and no three sites are collinear. We defer the discussion of how to

handle such degeneracies to Section 4.2.3. We begin our discussion with the unipoint

case.

4.2.1 The Unipoint Model

Let P = {(s1, π1), . . . , (sn, πn)} be a set of n uncertain points in the plane under

the unipoint model. We let S denote the set of all sites of P, namely, {s1, . . . , sn}. A
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subset A ⊆ S is the outcome of a probabilistic experiment with probability

π(A) =
∏

i | si∈A

πi ×
∏

i | si /∈A

πi

where πi is the complementary probability (1 − πi). Given a query point q, we want

to compute its membership probability, namely the probability that q lies in the convex

hull of A. For simplicity, we denote this probability by µ(q). Let conv(A) denote the

convex hull of A. By definition, µ(q) can be written as

µ(q) =
∑
A⊆S

q ∈ conv(A)

π(A),

which unfortunately involves an exponential number of terms (possible subsetsA). Our

polynomial-time scheme for computing µ(q) builds on the following simple observa-

tion: for an outcome A, q is outside conv(A) if and only if q is a vertex of the convex

hull conv(A ∪ {q}). For ease of reference, let C denote conv(A ∪ {q}) and V denote

the set of vertices of C. Then, the probability we want is µ(q) = 1− Pr
[
q ∈ V

]
.

If A = ∅, then clearly C = {q} and q ∈ V . Otherwise, |V | ≥ 2 and q ∈ V

implies that q is an endpoint of exactly two edges on the boundary of C.14 In this case,

we define the first edge following q in the counter-clockwise order of C as the witness

edge of the outcome A. (See Figure 4.1a.) It is easy to see that q ∈ V if and only if

14If A consists of a single site si, then C is the line segment qsi. In this case, we consider the boundary
of C to be a cycle formed by two edges: one going from q to si, and one going from si back to q.
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Figure 4.1: (a) A witness edge. (b) Sites in radial order around q. (c) The set Wi.

A = ∅ or (exclusively) A has a witness edge. Thus,

Pr
[
q ∈ V

]
= Pr

[
A = ∅

]
+
∑

1≤i≤n

Pr
[
qsi is the witness edge of A

]

The first term is easily computed in O(n) time. To compute the ith term in the summa-

tion, we observe that qsi is the witness edge of A if and only if si ∈ A and A contains

no sites to the right of the line←→qsi, where the right direction is with respect to the vector

−→qsi. The corresponding probability is easily written as:

πi ·
∏

j | sj∈Gi

πj

where Gi is the set of sites to the right of the line ←→qsi. This expression can be easily

computed in O(n) time. It follows that one can compute Pr
[
q ∈ V

]
, and therefore

µ(q), in O(n2) time.

The computation time can be improved to O(n log n) by computing the witness

edge probabilities in radial order around q. We sort all sites in counter-clockwise order

around q. Without loss of generality, assume that the circular sequence s1, . . . , sn is
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the resulting order. (See Figure 4.1b.) We first compute the probability that qs1 is the

witness edge inO(n) time. Then, for increasing values of i from 2 to n, we compute the

probability that qsi is the witness edge by updating the probability for qsi−1, in O(1)

amortized time. In particular, let Wi denote the set of sites in the open wedge bounded

by the lines ←−→qsi−1 and ←→qsi. (See Figure 4.1c.) Notice that Gi = Gi−1 ∪ {si−1} \Wi.

It follows that the probability for qsi can be computed by multiplying the probability

for qsi−1 with πi
πi−1
× πi−1∏

sj∈Wi πj
. The cost of a single update is O(1) amortized because

total number multiplications in all the updates is at most 4n. (Each site affects at most

4 updates.) Finally, notice that we can easily keep track of the set Wi during our radial

sweep, as changes to this set follow the same radial order.

Theorem 4.2.1. Given a set of n uncertain points in the unipoint model and a point q

in the plane, one can compute the membership probability of q in O(n log n) time and

linear space.

4.2.2 The Multipoint Model

Our algorithm extends to the multipoint model easily by modifying how we com-

pute the probability for an edge. The key change is in the expression used to compute

the probability that no sites exists in A from a given set G. In the unipoint model, we

use an expression of the form
∏

si∈G πi to write the corresponding probability. All such

expressions are replaced by
∏

1≤i≤m

(
1−∑j | sji∈G

πji

)
in the multipoint model, where
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(
1−∑j | sji∈G

πji

)
is the probability that ith point does not exist on a site from G. Be-

fore we describe the changes in more detail, we first give some preliminary information

on the membership probability in the multipoint model.

Recall that in the multipoint model, P is a set of pairs {(S1,Π1), . . . , (Sm,Πm)}

where each set Si = {s1
i , . . . , s

|Si|
i } describes the possible sites for the ith point of P

and each set Πi = {π1
i , . . . , π

|Πi|
i } describes the associated probability distribution. In

an experiment, the ith point of P is located at sji with probability πji . We use S to denote

the set of all sites, i.e., S = {sji} and set n = S.

For a subset A ⊆ S, we denote the probability that A is the outcome of a prob-

abilistic experiment by π(A). Similarly to the unipoint model, the definition of π(A)

involves a product of existence probabilities for all sites in A. The sites that are not in

A, however, contribute to π(A) in a different way. Specifically, let sji be a site that is

not in A. If A contains another sj
′
i site from the ith point, then the non-existence proba-

bility of sji is irrelevant to π(A), because existence of sj
′
i already implies non-existence

of sji . If there is no such site sj
′
i , then no site from the tuple of the ith point is in A.

In that case, we just consider the probability that ith point does not exist at all, which

is 1 −∑1≤j≤|Si| π
j
i . Finally, notice that if A contains two sites from the same uncer-

tain point, then it cannot be the outcome of an experiment. This implies the following

definition for π(A):
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π(A) =



0 if there are two distinct sites

sji and sj
′
i in A

∏
sji∈A

πji ×
∏

i | 6∃j.sji∈A

(
1−

∑
1≤j≤|Si|

πji

)
otherwise

The definition of µ(q) remains the same but is based on the new definition of π(A).

We now describe how µ(q) is computed in the multipoint model. For an outcome

A ⊆ S, let us define C and V as before, i.e., C = conv(A ∪ {q}) and V is the set

of vertices of C. As in the unipoint model, q is in the convex hull of A if and only if

q ∈ V . We follow a similar strategy and decompose Pr
[
q ∈ V

]
as follows:

Pr
[
q ∈ V

]
= Pr

[
A = ∅

]
+

∑
1≤i≤m

1≤j≤|Si|

Pr
[
qsji is the witness edge of A

]

The first term is trivial to compute in O(n) time. We compute the probability that qsji

forms a witness edge of A as follows. Let Gi,j be the set of sites to the right of the line
←→
qsji where the right direction is with respect to the vector

−→
qsji . As in the unipoint model,

the segment qsji is the witness edge of A if and only if sji ∈ A and A ∩ Gi,j = ∅. We
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can write the corresponding probability as follows:

Pr
[
sji ∈A ∧ A ∩Gi,j = ∅

]
= Pr

[
sji ∈A

]
× Pr

[
A ∩Gi,j = ∅ | sji ∈A

]
= Pr

[
sji ∈A

]
×

∏
1≤k≤m

Pr
[
A ∩Gi,j ∩ Sk = ∅ | sji ∈A

]
= Pr

[
sji ∈A

]
×

∏
1≤k≤m
k 6=i

Pr
[
A ∩ Sk ∩Gi,j = ∅

]

= πji ×
∏

1≤k≤m
k 6=i

1−
∑

l | slk∈Gi,j

πlk



This expression can be easily computed in O(n) time. It follows that one can com-

pute µ(q), thus µ(q), in O(n2) time.

As before, the computation time can be improved to O(n log n) by computing

the witness edge probabilities in radial order around q. Let the circular sequence

s′1, s
′
2, . . . , s

′
n be the counter-clockwise order of all sites around q, where each s′u is

a distinct site sba. We first compute the probability that qs′1 is the witness edge in O(n)

time and also remember the values of the intermediate factors used in the computation.

(The factors inside the
∏

1≤k≤m expression.) Then, for increasing values of u from 2 to

n, we compute the probability that qs′u is the witness edge by updating the probability

for qs′u−1. As a first step to this update, we update the values of the intermediate factors.

To be more specific, let Wu denote the set of sites in the open wedge bounded by the

lines
←→
qs′u and

←−→
qs′u−1. Also, for simplicity, assume that s′u = sba and s′u−1 = sdc . Notice
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that Ga,b = Gc,d ∪ {sdc} \Wu. Then, for each site sfe in Wu, the eth factor increases

by πfe . Also, the cth factor decreases by πdc . Finally, we temporarily set the value of

the ath factor to 1 (to cover the case k 6= i in the expression). Then, we can compute

the witness edge probability for qs′u by multiplying the probability of qs′u−1 with πba/π
d
c

and the multiplicative change in each intermediate factor. The cost of a single update is

O(1) amortized, as each site can contribute to at most 4 updates as in the unipoint case.

Theorem 4.2.2. Given a set of uncertain points in the multipoint model (with n sites in

total) and a point q in the plane, one can compute the membership probability of q in

O(n log n) time and linear space.

4.2.3 Dealing with Degeneracies

In this section, we briefly explain how our algorithm for the planar case can be

adapted to handle degeneracies. A degeneracy can happen in one of two ways: (i) Two

sites may occur at the same location, and (ii) three sites may be collinear. There are

two main issues to be handled in the presence of degeneracies:

1. A site may coincide with the query point q: If this is the case, then the existence

of such a site in A implies that q is in the convex hull conv(A). We compute the

probability that q coincides with a site in A separately. The remaining portion

of µ(q) is computed as before, however is conditioned on the non-existence of
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Figure 4.2: (a) An outcome with two possible witness edges, each shown by a gray
arrow. (b) An outcome where there is a witness edge but q is not a vertex of conv(A ∪
{q}).

all sites that coincide with q. To be precise, we again compute the probability

1 − Pr
[
q ∈ V

]
, but this time on a reduced set of sites which does not involve

the sites coinciding q. (In the multipoint model, this also requires adjusting the

probabilities of the sites which belong to the same uncertain point with another

site coinciding q.) Once this probability is computed, we further multiply it with

the probability that no site coinciding q exists in A.

2. q might be collinear with two or more other sites: In such a case, it is possi-

ble for an outcome to have multiple witness edges. (See Figure 4.2a.) We can

overcome this issue by selecting the witness edge that is the longest. If there

are multiple longest edges because their corresponding sites coincide, we simply

choose the one that has the lowest site index (the i in si). It may also be the case

that an outcome has a witness edge but q 6∈ V . (See Figure 4.2b.) Both cases

imply that a witness edge is valid only if there is no site in the outcome that is
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collinear with the witness edge and but not contained in the edge. Based on the

new definition of a witness edge, we tweak the way we compute the witness edge

probability as follows. To compute the probability for an edge qsi (in the unipoint

model), we include the following additional sets of sites in Gi:

• All sites collinear with q and si but not contained in the segment qsi.

• All sites sj coinciding si such that j < i.

A similar approach also applies to the multipoint model.

4.3 Membership Probability in d Dimensions

We now describe our algorithm for computing the membership probability for di-

mensions higher than two. This algorithm works correctly only for non-degenerate

input. To be precise, we require that all possible point sites, including the query point

q, are in general position: no two sites have the same coordinate along any dimension

and no k+ 2 sites lie on a k-dimensional hyperplane in any projection to a subset of the

coordinates. We note that computing the membership probability for degenerate point

sets in high dimensions is still an open problem. Our work can be considered a first step

into understanding the complexity of the membership probability in high dimensions.

For simplicity, we describe our algorithm in the unipoint model and then briefly

explain how it extends to the multipoint model.
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4.3.1 The Unipoint Model

The main difficulty in extending the two-dimensional solution idea to higher dimen-

sions is an appropriate generalization of witness edges, which allow us to implicitly sum

over exponentially many outcomes without double counting. The following discussion

explains the main idea we use for this generalization.

In keeping with the planar case, let V be the vertices of C and let λ(A∪{q}) denote

the point with lowest dth coordinate in A∪{q}. Clearly, if q is λ(A∪{q}) then q ∈ V .

We decompose the probability that q ∈ V based on which point among A ∪ {q} is

λ(A ∪ {q}). In particular, we write

Pr
[
q ∈ V

]
= Pr

[
q ≡ λ(A ∪ {q})

]
+
∑

1≤i≤n

Pr
[
si ≡ λ(A ∪ {q}) ∧ q ∈ V

]
.

It is trivial to compute the first term. We show below how to compute each term of the

summation in O(nd−1) time, which gives the desired bound of O(nd).

Consider an outcome A with si ∈ A. We project the d-space onto the first (d − 1)

dimensions, and let A′, s′i, q
′, respectively, denote the projections of A, si and q. Let C ′

denote conv(A′ ∪ {q′}), let V ′ be the vertices of C ′. Observe that V ′ is not necessarily

the projection of V because some vertices of V may fall inside C ′ when projected.

Let −→r (s′i, q
′) denote the ray obtained by removing the segment s′iq

′ from the ray

−→
s′iq
′. (See Figure 4.3a for a three-dimensional example.) We say that a facet15 f of C

15A facet of a d-dimensional polytope is a (d− 1)-dimensional face on its boundary.
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Figure 4.3: (a) The ray −→r (s′i, q
′). (b) A si-escaping facet f for q on C.

is a si-escaping facet for q, if q is a vertex of C adjacent to f and the projection of

f into the first (d − 1) dimensions intersects −→r (s′i, q
′). (See Figure 4.3b for a three-

dimensional example.) The following lemma is key to our algorithm.

Lemma 4.3.1. If si ∈ A, (i) q has at most one si-escaping facet on C; (ii) q ∈ V if and

only if q has an si-escaping facet on C or (exclusively) q′ ∈ V ′.

Proof. Proof of part (i) : Suppose that si ∈ A and q ∈ V . Assume to the contrary

that two si-covering facets f1 and f2 exists. Recall that a convex hull is defined by

an intersection of halfspaces. Let H1 be the defining halfspace that is bounded by the

hyperplane supporting f1 and contains C. Define H2 similarly for f2.

H1 and H2 grow towards opposite directions along the dth axis, otherwise C would

be unbounded. To see this, consider a line ` parallel to the dth axis and projecting to

the point q′+ ε−→v where ε is an infinitesimal and −→v is the direction vector of −→r (s′i, q
′).

Clearly, ` intersects both f1 and f2 and no other facet of C. Unless, H1 and H2 have
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Figure 4.4: The cross-section of the space on the plane defined by the dth coordinate
axis and the line supporting −→r (s′i, q

′).

opposite directions, the intersection of ` with H1 and H2 would be infinitely long and

thus C would be unbounded.

Since the projections of f1 and f2 extend towards −→r (s′i, q
′) (and due to the general

position assumption), H1 and H2 have a positive intersection length on all lines parallel

to dth axis along−→r (s′i, q
′). The hyperplanes bounding H1 and H2 intersect at q. Due to

the linearity of hyperplanes, the intersection of H1 and H2 is empty along the reverse

ray
−→
q′s′i. (H1 and H2 switch sides at q. See Figure 4.4 for an illustration.) It follows

that si is not in C (and thus not in A), yielding a contradiction.

Proof of part (ii) : We first argue that both conditions imply q ∈ V . If q has an si-

escaping facet on C then it is a vertex of C, thus q ∈ V . Also, if q′ ∈ V ′, then it has to

be a vertex of C and thus q ∈ V .

We now prove the converse. In the course of the proof, we also show that the

conditions are mutually exclusive. Suppose that si ∈ A and q ∈ V . We argue that
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q′ ∈ V ′ if and only if there is no si-escaping facet f on q. If such a facet f exists,

then q′ is strictly contained within a line segment in C ′, in particular the line segment

between s′i and q′ + ε−→v where ε is an infinitesimal and −→v is the direction vector of

−→r (s′i, q
′). It follows that q′ cannot be a vertex of C ′. If such a facet f does not exist,

then the ray −→r (s′i, q
′) has an empty intersection with C ′ and thus q′ is on the boundary

of C ′. Since points in A ∪ {q} are in general position, q′ is a vertex.

Given a subset of sites Sα ⊆ S\{si} of size (d− 1), define f(Lα) to be the (d− 1)-

dimensional simplex whose vertices are the points in Sα and q. Since si ≡ λ(A ∪ {q})

implies si ∈ A, we can use Lemma 4.3.1 to decompose the ith term as follows:

Pr
[
si ≡ λ(A ∪ {q}) ∧ q ∈ V

]
= Pr

[
si ≡ λ(A ∪ {q}) ∧ q′ ∈ V ′

]
+

∑
Lα⊆S\{si}
|Lα|=(d−1)

f(Lα) is si-escaping for q

Pr
[
si ≡ λ(A ∪ {q}) ∧ f(Lα) is a facet of C

]
.

The first term is an instance of the same problem in (d − 1) dimensions (for the point

q′ and the projection of S), and thus is computed recursively. For the second term, we

compute the probability that f(Lα) is a facet of C as follows. Let G1 ⊆ S be the subset

of sites which are on the other side of the hyperplane supporting f(Lα) with respect to

si. Let G2 ⊆ S be the subset of sites that are below si along dth axis. Clearly, f(Lα) is

a facet of C (and si ≡ λ(A ∪ {q})) if and only if all points in Lα and si exist in A, and
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Figure 4.5: A facet fj projected to the orthogonal complement plane.

all points in G1∪G2 is absent from A. The corresponding probability can be written as

πi ×
∏

j | sj∈Lα

πj ×
∏

j | sj∈(G1∪G2)

πj

This formula is valid only if Lα ∩ G2 = ∅ and si has a higher dth coordinate than

q; otherwise we set the probability to zero. This expression takes linear time, and

the whole summation term can be computed in O(nd) time. Then, by induction, the

computation of the ith term takes O(nd) time. The base case of our induction is a

two-dimensional membership probability problem with the additional condition si ≡

λ(A∪{q}). Our two dimensional algorithm can be easily adapted to solve this problem

in O(n log n) time as well.

Similar to the planar case, we can improve the computation time for the ith term to

O(nd−1) by considering the facets f(Lα) in radial order. In particular, let Lβ ⊆ S be a

subset of (d−2) sites. Let fj denote the (d−1)-dimensional simplex f(Lβ∪{sj}) where

sj 6∈ Lβ and sj 6= si. We can compute the probability that fj is a facet ofC for all facets

fj in constant amortized time as follows. We project all sites to the two-dimensional

plane passing through q and orthogonal to the (d− 2)-dimensional hyperplane defined
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by Lβ ∪ {q}. (Such a plane is known as an orthogonal complement.) The hyperplane

defined by Lβ ∪ {q} projects onto q on this plane. Moreover, each facet fj projects

to a line segment extending from q. When we need to compute the probability that fj

is a facet of C, the set G1 includes the sites on the other side of the line supporting

fj’s projection with respect to si. (See Figure 4.5.) We compute probabilities for the

facets fj based on their radial order around q. The probability for the next facet in the

sweep can be computed by modifying the probability of the previous facet in constant

amortized time as we have done for the planar case, as we can efficiently track how

G1 changes. As a final note, we point out that the total cost of all sorting involved is

O(nd−1 log n) which is less than the overall cost of O(nd).

Theorem 4.3.2. Given a set P of n uncertain points in the unipoint model and a point

q in d-space (where d ≥ 3), one can compute the membership probability of q in O(nd)

time and linear space, provided that P ∪ {q} is non-degenerate.

4.3.2 The Multipoint Model

As in the planar case, the d-dimensional algorithm easily extends to the mulitpoint

model. As before, we compute µ(q) by computing the probability Pr[ q ∈ V ]. Follow-
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ing the same strategy, we decompose it as

Pr
[
q ∈ V

]
= Pr

[
q ≡ λ(A ∪ {q})

]
+
∑

1≤i≤m

 ∑
1≤j≤|Si|

Pr
[
sji ≡ λ(A ∪ {q}) ∧ q ∈ V

] .

It is trivial to compute the first term in O(n) time. We now show how to compute each

term inside the summations in O(nd−1) time. This implies a total time of O(nd).

Clearly, Lemma 4.3.1 extends to the multipoint model, so we can use sji -escaping

facets to decompose our probability. Given a subset of sites Sα ⊆ S \
{
sji
}

of size

(d − 1), define f(Lα) to be the (d − 1)-dimensional simplex whose vertices are the

points in Sα and q. Then,

Pr
[
sji ≡ λ(A ∪ {q}) ∧ q ∈ V

]
= Pr

[
sji ≡ λ(A ∪ {q}) ∧ q′ ∈ V ′

]
+

∑
Lα⊆S\{sji}
|Lα|=(d−1)

f(Lα) is sji -escaping for q

Pr
[
sji ≡ λ(A ∪ {q}) ∧ f(Lα) is a facet of C

]
.

The first term is computed recursively. We compute each term of the summation as

follows. Let Iα be the set of uncertain point indices of the sites in Lα, i.e., Iα =

{u | ∃v . svu ∈ Lα}. As before, let G1 ⊆ S be the subset of sites which are on the other

side of the hyperplane supporting f(Lα) with respect to sji . Let G2 ⊆ S be the subset

of sites that are below sji along the xd-axis. Following the same strategy, we write the

desired probability as the probability that all points in Lα and sji exist in A, and all

143



Chapter 4. Convex Hulls under Uncertainty: Membership Probability

points in G1 ∪ G2 are absent from A. This probability is clearly zero, if any of the

following conditions hold:

• Lα ∩G2 6= ∅.

• sji has a higher xd-coordinate than q.

• Lα contains any two sites from the same uncertain point Sk.

• Lα contains any site from Si.

Otherwise, we can write the probability as follows:

Pr
[
sji ∈ A ∧ Lα ∩ A = Lα ∧ A ∩ (G1 ∪G2) = ∅

]
= Pr

[
sji ∈ A

]
× Pr

[
Lα ∩ A = Lα | sji ∈ A

]
×

Pr
[
A ∩ (G1 ∪G2) = ∅ | sji ∈ A ∧ Lα ∩ A = Lα

]
= Pr

[
sji ∈ A

]
× Pr

[
Lα ∩ A = Lα

]
×

Pr
[
A ∩ (G1 ∪G2) = ∅ | sji ∈ A ∧ Lα ∩ A = Lα

]
= Pr

[
sji ∈ A

]
× Pr

[
Lα ∩ A = Lα

]
×∏

1≤u≤m
u6=i
u6∈Iα

(
Pr[Su ∩ A ∩ (G1 ∪G2) = ∅ ]

)

= πji ×
∏

u,v | svu∈Lα

πvu ×
∏

1≤u≤m
u6=i
u6∈Iα

1−
∑

v | svu∈(G1∪G2)

πvu

.
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The expression takes linear time to compute and thus the summation term can be

computed in O(nd) time. Then, by induction, the computation of the term for the site

sji takes O(nd) time. As before, we can improve this computation time to O(nd−1) by

considering the facets f(Lα) in radial order. This implies a total complexity of O(nd)

for the algorithm.

Theorem 4.3.3. Given a set P of uncertain points in the multipoint model (with n

sites in total) and a point q in d-space (where d ≥ 3), one can compute the membership

probability of q inO(nd) time and linear space, provided that P∪{q} is non-degenerate.

4.4 The Probability Map

In some applications, one might be interested in seeing how the uncertain convex

hull is distributed over the space. In particular, one can construct a probability map

that plots the membership probability throughout the whole space. Figure 4.6 shows

how such a probability map might look like in two dimensions. In this section, we

investigate complexity of probability maps.

Given a set P of uncertain points, the probability map of P, denoted M(P), is the

subdivision of Rd into maximal connected regions so that µ(q) is the same for all query

points q in a region. The following lemma gives a tight bound on the size of M(P).
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Figure 4.6: A set of uncertain points in the unipoint model and the corresponding
probability map. The existence probability of each point is shown above it. In the map,
the higher the color intensity, the higher the membership probability is.

Lemma 4.4.1. The worst-case complexity of the probability map of a set of uncertain

points in Rd is O(nd
2
), under both the unipoint and the multipoint model, where n is

the total number of sites in the input.

Proof. We prove the result for the unipoint model; extension to the multipoint is straight-

forward. Consider the set Φ of O(nd) hyperplanes formed by all d-tuple of points in P.

In the arrangement A(Φ) formed by these planes, each cell (including the lower dimen-

sional cells bounding the d-dimensional cells) has a constant value of µ(q), because all

points in it are contained by the same set of convex hulls formed among the uncertain

point set. It follows that the probability map is a refinement of this arrangement. Since

the arrangement has size O((nd)d) = O(nd
2
) [37], the upper bound follows.
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4.4.1 Computing the Probability Map in the Plane

In this section, we describe how to compute the probability map for a given set of

uncertain points on the plane in O(n4) time. For simplicity, we assume that the input is

given in the unipoint model, however, we briefly explain how to extend the algorithm

to the multipoint model.

The high level idea of our algorithm is as follows. Recall that the structure of the

probability map is an arrangement of O(n2) lines that contains O(n4) faces, edges and

vertices. We first construct the whole arrangement in O(n4) time by using an algorithm

by Edelsbrunner et al. [37]. Next, we compute the membership probability of one of the

faces in the arrangement, say F , in O(n log n) time. We then compute the membership

probabilities of the vertices, edges and faces neighboring F , in O(1) time per each,

by modifying the probability of F .16 We then apply the same process for all faces

neighboring F . By repeatedly expanding into the neighboring faces, we can compute

the probability for all of the arrangement in O(n4) time.

We now show how to compute the probability of a face F ′ by using the already

computed probability of one of its neighboring faces F . We later explain how this

algorithm can be adapted to compute the probability of neighboring edges and vertices.

16For ease of presentation, we assume that the arrangement is non-degenerate. It is straightforward
to apply our technique on degenerate arrangements by using standard techniques (such as perturbation)
to create a non-degenerate arrangement. We note that, even if we perturb the points to create a non-
degenerate arrangement, we still use the old coordinates of the points and utilize the degeneracy handling
rules of Section 4.2.3 while computing probabilities.
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Figure 4.7: The cases to consider for computing the probability of F ′ from F .

Without loss of generality, assume that F and F ′ are separated by a vertical line

passing through the sites si and sj and F is to the left of F ′. Notice that the boundary

separating F and F ′ is only a segment of the vertical line and does not contain si or sj .

Now imagine that a point q moves through this boundary, crossing from F to F ′. It is

easy to see that the change in the membership probability of q is due to the changes in

witness edge probabilities of the segments qsi and qsj , as other sites are irrelevant. We

now describe the change in the witness edge probability of qsi. The probability of qsj

changes analogously. The change in the probability of qsi happens differently for two

cases (See Figure 4.7):

(a) si is above sj: Then, sj switches from the right side of the line←→qsi to its left side

(where right direction is with respect to the vector ~qsi). Consequently, the proba-

bility of qsi changes by a factor of 1
πj

.
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(b) si is below sj: Then, sj switches from the left side of the line←→qsi to its right side.

Consequently, the probability of qsi changes by a factor of πj .

The changes clearly require constant time operations, and thus the membership proba-

bility of F ′ can be computed in O(1) time.

We now describe how to compute the membership probability of an edge e bound-

ing F by using the already computed probability of F . Notice that any query point q

on an edge e is degenerate with respect to the uncertain points. Therefore, we have to

make use of the degeneracy handling rules from Section 4.2.3. Without loss of gener-

ality, assume that e is on a vertical line passing through the sites si and sj and F is to

the left of e. Notice that e is only a segment of the vertical line and does not contain

si or sj . Now imagine that a point q moves from F onto e. Again, the change in the

membership probability of q is due to the changes in witness edge probabilities of the

segments qsi and qsj . We describe the change in the witness edge probability of qsi,

the change for qsj is analogous. We consider six different cases based on the vertical

order of the points q,si and sj (See Figure 4.8):

(a) Order q, si, sj: sj switches from the right side of←→qsi to←→qsi. Based on the degener-

acy rules, it still requires sj to be non-existent for qsi to be a witness edge. Hence,

there is no change to the witness edge probability of qsi.
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Figure 4.8: The cases to consider for computing the probability of e from F .

(b) Order q, sj, si: sj switches from the left side of←→qsi to←→qsi. Based on the degeneracy

rules, sj has still no effect on the witness edge property of qsi. Hence, there is no

change.

(c) Order si, q, sj: sj switches from the right side of←→qsi to←→qsi. Based on the degener-

acy rules, it still requires sj to be non-existent for qsi to be a witness edge. Hence,

there is no change.

(d) Order sj, q, si: sj switches from the left side of←→qsi to←→qsi. Based on the degeneracy

rules, it requires sj to be non-existent for qsi to be a witness edge. Hence, the

witness edge probability of qsi changes by πj .

(e) Order si, sj, q: sj switches from the right side of←→qsi to←→qsi. Based on the degener-

acy rules, sj has no effect on the witness edge property of qsi. Hence, the witness

edge probability of qsi changes by 1
πj

.
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(f) Order sj, si, q: sj switches from the left side of←→qsi to←→qsi. Based on the degeneracy

rules, it requires sj to be non-existent for qsi to be a witness edge. Hence, the

witness edge probability of qsi changes by πj .

The changes clearly require O(1) time.

Finally, we explain how to compute the probability of the vertices. Let v be a vertex

of the arrangement such that v is an endpoint of two edges e1 and e2 that bound F .

Then, the membership probability of v is computed by applying the same probability

changes that is applied to e1 and e2. The only exception to this is when v coincides

a site si. In that case, we compute the membership probability of v from scratch in

O(n log n) time. Since the number of such vertices is linear, it does not increase our

overall cost of O(n4).

The extension of our technique to the multipoint model is straightforward. The only

major difference is that we need to remember (similar to what is done in Section 4.3.2)

the intermediate factors when computing face probabilities, as updating the witness

edge probabilities requires updating these factors first. The total cost of a single update

remains O(1) because it requires updating one intermediate factor of two witness edge

probabilities.

Theorem 4.4.2. Given a set P of uncertain points in the plane (with n sites in total),

one can compute M(P) in O(n4) time.
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Once the probability map is computed, one can construct a data structure to answer

membership probability queries. Using the point location structure by Kirkpatrick [54],

we can construct such a data structure in O(n4) time. The structure consumes O(n4)

space and can answer queries in O(log n) time.

4.5 Conclusion

In this chapter, we investigated convex hulls under uncertainty with an emphasis

on computing the membership probability. One closely related problem that we leave

open is the efficient computation of the membership probability for degenerate input

in dimensions higher than 3. While we believe an adaptation of our high-dimensional

algorithm to handle degeneracies is possible, it seems to be a difficult task. Being

unable to compute the membership probability efficiently for degenerate input sets also

means that we cannot efficiently compute complete probability maps as such maps

would include many points that are degenerate with respect to the uncertain point set.

Making sense of uncertain data is a complex and challenging task. For simple nu-

merical data, elementary statistics such as mean, median, or mode serve a useful first

order approximation. For multi-dimensional spatial data, however, there are no univer-

sally agreed upon summaries of similar generality. Our work on membership proba-
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bility and probability maps is an attempt to explore some natural geometric structures,

and their complexity, over probabilistic data.
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Chapter 5

The Most Likely Convex Hull of

Uncertain Points∗

5.1 Introduction

In this chapter, we study the problem of computing the most likely convex hull of

uncertain points. The problem is fundamental in its own right, extending the notion of

minimal convex enclosure to probabilistic input, but is also motivated by a number of

applications dealing with noisy data. Before formalizing the problem, let us mention

some motivating scenarios for our problem. In movement ecology [43, 44], scientists

track the movements of a group of animals using sensors with the goal of inferring

∗This chapter is based on a joint work with Subhash Suri and Kevin Verbeek. Parts of this chapter
appeared in the following publications: [70] (Published and copyright held by Springer. The final publi-
cation available at http://link.springer.com/10.1007/978-3-642-40450-4_67.)
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their natural “home range”. The ecologists have long known that the smallest convex

polygon containing all possible locations visited by the animals is a gross overestima-

tion of the home range, due to the outlier problem, and instead have begun to consider

probability-based isopleths. The most likely hull is one possible tool in this analysis:

use a discrete set of landmarks (points), assign probability to each based on the fre-

quency of the animals’ visits to the landmarks, and compute the most likely convex

hull of this probabilistic set of points as the most probable home range. As another

example, consider monitoring of a large geographic area for physical activity (e.g.,

earthquake tremors). After collecting data over a period of time, we want to estimate

the most likely region of activity. Since the value of a prediction decreases sharply with

the rate of false positives, we want to find the tightest region for expected activity, and

the most likely hull is a natural candidate. Finally, as a growing number of applications

rely on machine learning and data mining for classification, we are inevitably forced

to work with data whose attributes are inherently probabilistic. Computing meaning-

ful geometric structures over these data is an interesting, and challenging, algorithmic

problem. The most likely hull is a convenient vehicle to investigate these types of

problems, although our methods and results are applicable more broadly, as discussed

later.
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As done in the previous chapter, our study focusses on two models of uncertainty:

the unipoint model and the multipoint model. We briefly explain two models again for

the completeness of this chapter.

In the unipoint model, each input point has a fixed location but it only exists prob-

abilistically. Specifically, the input P is a set of pairs {(s1, π1), . . . , (sn, πn)} where

each si is a point in d-space and each πi is a real number in the range (0, 1] denot-

ing the probability of si’s existence. The existence probabilities of different points are

independent.

The multipoint model generalizes the unipoint model to incorporate locational un-

certainty. In the multipoint model, each point probabilistically exists at one of multiple

possible sites. Specifically, P is a set of pairs {(S1,Π1), . . . , (Sm,Πm)} where each

Si is a set of points and each Πi is a set of reals in the range (0, 1], with |Si| = |Πi|.

The set Si = {s1
i , . . . , s

|Si|
i } describes the possible sites for the ith point of P and the

set Πi = {π1
i , . . . , π

|Πi|
i } describes the associated probability distribution. The proba-

bilities πji correspond to disjoint events and therefore sum to at most 1. By allowing

the sum to be less than one, this model also accounts for the possibility that the point

does not exist (i.e. the null location)—thus, the multipoint model strictly generalizes

the unipoint model. In the multipoint model, the number of points in P is referred by

m and we use n to refer the total number of possible sites, i.e., n =
∑

i |Si|.
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In either setting, the convex hull of P is a random variable, which assumes values

over the convex hulls of the (at most) 2n possible subsets. We are interested in comput-

ing the most likely convex hull for P, which is the mode of the convex hull variable.

Results

Our first result shows that the most likely hull of points in 2 dimensions in the uni-

point model can be found in O(n3) time. We then show that the problem becomes

NP-hard for dimensions d ≥ 3. We also show an inapproximability results. In par-

ticular, computing a hull whose likelihood is within factor 2−O(n1−ε) of the optimal is

NP–hard. This is nearly tight because a factor-(2−n) approximate hull is easily com-

puted by a simple greedy algorithm. Under the multipoint model, we show that the

most likely hull problem is NP-hard even in two dimensions, and also inapproximable

to a factor better than 2−O(n1−ε) unless P=NP. Note that in both models the problem

is clearly in P for d = 1, since the number of distinct convex hulls in one dimension

is only polynomial. While we focus on the most likely hull as a natural and concrete

example, our algorithms and techniques apply more broadly to other possible ways of

defining a probabilistic convex hull.
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Chapter Organization

In Section 5.2, we explain our dynamic programming algorithm to compute the

most likely hull in the planar unipoint model. In Sections 5.3, we prove that comput-

ing the most likely hull in three or higher dimensions is NP-hard. In Section 5.4, we

describe our NP-hardness for the multipoint model. We finish with a brief overview of

possible extensions and concluding remarks in 5.5.

5.2 Two-Dimensional Most Likely Hull in the Unipoint

Model

In this section, we describe a dynamic programming algorithm for computing the

most likely hull of n points in the plane under the unipoint model of uncertainty. For

simplicity, we assume that no three points are collinear, but the algorithm is easily

modified to handle such degeneracies. We begin with some general technical facts

related to convex hulls of uncertain points in the unipoint model.

Let P = {(s1, π1), . . . , (sn, πn)} denote the input to the uncertain convex hull prob-

lem in d-space and let S be the set of sites, i.e., S = {s1, . . . , sn}. A subset A ⊆ S

occurs as an outcome of a probabilistic experiment with probability π(A) given by

π(A) =
∏
si∈A

πi ×
∏
si /∈A

πi
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where we use the notation πi = (1 − πi). Given an outcome A, its convex hull is

denoted as conv(A). For a convex polytope C, we define its likelihood, denoted L(C),

as the probability that C is the convex hull of the random outcome of a probabilistic

experiment on P. In other words,

L(C) = Pr
[

conv(A) ≡ C
]

=
∑
A⊆S

conv(A)≡C

π(A)

The most likely hull of P is the polytope C with the maximum value of L(C). Our first

lemma shows that L(C) can be written as a product of two factors where the first factor

involves only the vertices of C, and not all the sites that fall inside C.

Lemma 5.2.1. Let C be a convex polytope, V ⊆ S be its vertex set, and Sout ⊆ S the

set of sites lying outside C. Then, we have the following:

L(C) =
∏
si∈V

πi ×
∏

si∈Sout

πi,

Proof. Let Sin denote the sites contained by C (possibly on the boundary). Then,

L(C) =
∑

A⊆S ∧ conv(A)=C

π(A)

=
∑

V⊆A⊆Sin

π(A)

=
∑

V⊆A⊆Sin

(∏
si∈A

πi ×
∏
si 6∈A

πi

)
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=
∑

A=V ]A′
A′⊆(Sin\V )

∏
si∈V

πi ×
∏

si∈Sout

πi ×
∏
si∈A′

πi ×
∏

si∈(Sin\V )\A′
πi



=
∏
si∈V

πi ×
∏

si∈Sout

πi ×
∑

A′⊆Sin\V

∏
si∈A′

πi ×
∏

si∈(Sin\V )\A′
πi


=
∏
si∈V

πi ×
∏

si∈Sout

πi ×
∏

si⊆Sin\V

(πi + πi)

=
∏
si∈V

πi ×
∏

si∈Sout

πi

5.2.1 Likelihood Contributions of Edges

We now describe how to find the most likely hull for a 2-dimensional input under

the unipoint model. Our algorithm computes, for each site si, the most likely hull with

si as its lowest (minimum y-coordinate) vertex, and then outputs the best hull over all

choices of si. For ease of reference, let us call a convex polygon with si as its lowest

vertex, a hull rooted at si. We decompose the likelihood of a convex hull into several

components, each associated with an edge of the hull. The key to the computational

efficiency is to ensure that the component associated with an edge does not depend on

the hull in which the edge participates. Geometrically, we associate a wedge shaped

region with each edge, depending only on the choice of the lowest vertex, and define
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sα(4)
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sisj

sisj

s1

(d)

Figure 5.1: Illustrations for the two-dimensional most likely hull in the unipoint model.

the contribution based only on the sites contained in this wedge. We now discuss this

in more details.

Suppose we want to compute the most likely hull rooted at s1. Without loss of

generality, let s2, . . . , st−1 be the sequence of sites (all lying above s1) in the counter-

clockwise order around s1, for (t − 1) ≤ n. Any hull rooted at s1 has a subsequence

of s1, . . . , st−1 as its vertex set. Finally, for notational convenience, we add an artificial

site st = s1 (a copy of the root point) with probability zero.

Given two sites si and sj , with 1 ≤ i < j ≤ t, we use sisj to denote the directed

edge drawn from si to sj . To each directed edge sisj , we associate a region of space

Rj
i . For an edge not involving s1 or its copy st, namely sisj , for 1 < i < j < t, Rj

i

is the region bounded by the segment sisj and the rays −−→s1si and −−→s1sj . See Figure 5.1a

for illustration. For edges with the first endpoint at s1, namely s1si, for 1 < i < t, Ri
1

is the region bounded (on its left) by the downward ray extending from s1 and the ray

−−→s1si. The complementary region of Ri
1 is also important, and we call it Rt

i, associated

with the edge sist, which is the reverse edge of s1si. See Figure 5.1b.
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We now define the contribution of the directed edge sisj , denoted C(sisj), as πi

times the probability that none of the sites in the regionRj
i (except si and sj) are present,

including the sites that may lie below s1. That is,

C(sisj) = πi ×
∏
sk∈Rji

πk

The following lemma shows how these edge contributions help us compute the likeli-

hood of a convex hull C.

Lemma 5.2.2. Let C be a hull rooted at s1, with vertices s1, sα(1), . . . , sα(`) in the

counter-clockwise order. Then,

L(C) = C(s1sα(1))× C(sα(1)sα(2))× · · · × C(sα(`−1)sα(`))× C(sα(`)st)

Proof. Partition the space outside C into the regions R
α(1)
1 , R

α(2)
α(1), . . . , R

α(`)
α(`−1), R

t
α(`) by

drawing a downward ray from s1 and drawing rays −−−−→s1sα(j) for each 1 ≤ j ≤ `. (See

Figure 5.1c for an example.) Then, by Lemma 5.2.1, it is easy to see that the L(C) is

the product of the contributions of the edges of C.

The contribution of each edge can be computed in constant time after an O(n2)-

time preprocessing. The main idea is to utilize a modified version of a triangle query

structure by [38]. In particular, we have the following lemma from [38].

Lemma 5.2.3. Given a set P of n points in the plane, one can preprocess P in O(n2)

time and space, so that the number of points in P contained by a given query triangle

(with corners among P) can be reported in constant time.
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It is trivial to modify this data structure so that, under an assignment of weights to

the set of points, one can report the product of the weights of the points in the query

triangle. In particular, we have the following lemma.

Lemma 5.2.4. Let P be a set of n points in the plane such that each point is assigned

a weight. One can preprocess P in O(n2) time and space, so that the product of the

weights of all points in P contained by a given query triangle (with corners among P)

can be reported in constant time.

We now show how to query edge contributions using this data structure. Recall

that S is the set of all sites, and we want to compute edge contributions with respect

to lowest vertex s1. Let U be the set of the four corners of the bounding box of S.

Moreover, let V be the set of points produced by intersecting the bounding box of S

with the downward ray extending from s1 and the rays s1si for all si. Clearly, |V | ≤ n.

We construct an instance of the weighted triangle query structure on S ∪U ∪V . In this

structure, we define the weight of each point si in S as its corresponding complementary

probability, i.e., πi. For all points in U and V , we define the weight as 1.

Given an edge sisj , we can compute its contribution as follows. The region Rj
i

restricted to the bounding box of S is a polygon of constant complexity. We triangulate

this polygon, and for each triangle, query the product of the weights of the points in

the triangle. (See Figure 5.2.) The results of these queries, when multiplied, gives the
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s1

sisj

si

Rj
isj

Figure 5.2: Triangulating Rj
i inside the bounding box of S. The black circles are the

sites in S. The black squares the points in U and V .

product of complementary probabilities of all sites in Rj
i , which is what we need to

compute C(sisj).

5.2.2 The Dynamic Programming Algorithm

Our dynamic programming algorithm computes, for each edge sisj , the convex

chain whose edges yield the maximum product of contributions under the following

constraints:

1. The sequence of vertices in the chain is a subsequence of s1, . . . , st.

2. The first vertex of the chain is s1.

3. The last edge of the chain is sisj . (See Figure 5.1d for an example.)

We denote this maximum chain by T (sisj). With a slight abuse of notation, we also use

T (sisj) to denote the product of the edge contributions of this chain. Clearly, all chains

of the form T (sist) correspond to polygons rooted at s1, and the one with the maximum
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contribution is the most likely hull we want. Our dynamic programming formulation is

fairly standard, and similar style of algorithms have been used in the past for computing

largest convex subsets [9, 32] and monochromatic islands [10].

We now describe an optimal substructure property crucial for our dynamic pro-

gramming algorithm. Consider a chain T (sisj). This, by definition, has the maximum

likelihood of all chains terminating with the edge sisj . If we remove the last vertex sj

of T (sisj), and the corresponding edge sisj , then the remaining chain should be the

optimal chain terminating at si that can be extended to sj without violating convexity.

In other words, the remaining chain is the maximum among all chains T (sksi) (where

1 ≤ k < i) such that the path sk → si → sj is a left turn. This implies the following

recurrence:

T (sisj) =


C(s1sj) if i = 1

C(sisj) × max
1≤k<i

sk→si→sj is a left turn

(
T (sksi)

)
otherwise

We use this recurrence to compute all the chains T (sisj) as follows. We begin by

setting T (s1si) to C(s1si) for all 1 < i ≤ t. Then, we process all sites si in increasing

order of i. When we process a site si, we compute all chains T (sisj) by using the

previously computed chains. This can be done in O(n) time as follows. Let Sprec be

the set of sites {s1, . . . , si−1} and Ssucc be the set {si+1, . . . , st}. Let sβ(1), . . . , sβ(`) be
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SprecSsucc

si

sβ(u+1)

sβ(u)

s1

Figure 5.3: Wedge for T (sisj).

the sites in Sprec in counter-clockwise order around si, starting with s1.17 For each site

sβ(u) in Sprec, we define s∗u to be the site sk among the sequence sβ(1), . . . , sβ(u) that

maximizes T (sksi). The site s∗u can be computed for all sites sβ(u) with a linear sweep

of the sites in Sprec in order.

For each site sβ(u) in Sprec, we set the value T (sisj) to C(sisj)×T (s∗usi) for all sites

sj in Ssucc inside the wedge bounded by the lines ←−−→sβ(u)si and ←−−−−→sβ(u+1)si.18 (See Figure

5.3.) Note that the sites in this wedge are the sites that form a left turn when connected

to sβ(1), . . . , sβ(u) through si (the condition in the recurrence relation). By considering

the sites sβ(u) in radial order around si, we can locate each site in the wedge of interest

in constant time.

The processing of a single point si takes O(n) time, and thus we can find the most

likely hull rooted at s1 in O(n2) time, and the global most likely hull of P in O(n3)

time. The algorithm needs O(n2) space, dominated by the storage of the T (·) values.

17This counter-clockwise order for all sites si can be precomputed in O(n2 log n) time.
18We also remember how T (sisj) is computed, so the corresponding chain can be constructed later.
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Figure 5.4: Lemma 5.3.1.

Theorem 5.2.5. The most likely convex hull of an uncertain point set defined by n sites

in the unipoint model can be computed in O(n3) time and in O(n2) space.

5.3 Hardness of the 3-Dimensional Most Likely Hull

We now show that computing the most likely hull in 3 or more dimensions is NP-

hard in the unipoint model. In particular, we give a reduction from the vertex cover

problem in penny graphs to the 3-dimensional most likely hull problem.

A penny graph is a graph G = (V,E) along with an embedding ρ : V → R2

such that ‖ρ(u) − ρ(v)‖2 = 2 if (u, v) ∈ E, and ‖ρ(u) − ρ(v)‖2 > 2 if (u, v) /∈

E, where ‖.‖2 denotes the L2 norm. In other words, a penny graph admits a planar

drawing where vertices are represented as unit disks with pairwise disjoint interiors, and

two disks make contact if and only if there is an edge between the two corresponding

vertices. We denote the centers of the unit disks by the points p1, . . . , pn, and the point

of contact between two adjacent disks with centers pi and pj by pij . The following
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simple observation about the penny graph embedding will be critical in our reduction.

See Figure 5.4 for an illustration.

Lemma 5.3.1. ‖pk − pij‖2 ≥
√

3, for all k 6= i, j.

Proof. Consider the triangle formed by pi, pj , and pk. By Heron’s formula, the area A

of this triangle is at least
√

3 (the sides have length at least 2). Alternatively, the area

can be computed asA = bh/2, where b = ‖pi−pj‖2 = 2 and h is the height of triangle.

Thus we get that ‖pk − pij‖2 ≥ h = A ≥
√

3.

The vertex cover problem for penny graphs is to find the smallest subset U ⊆ V

of vertices such that every edge of the graph has an endpoint in U . This problem was

shown to be NP-hard in [20]. Our reduction relies on the following simple but important

property of the most likely hull in the unipoint model.

Lemma 5.3.2. Any point (si, πi) with πi ≥ 1/2 is in the most likely hull.

Proof. For the sake of contradiction assume that a site sk has probability πk > 1
2

and

is outside the most likely hull C. Let V ⊆ S be the set of sites that appear on C as a

vertex, and let Sout be the set of sites outside C. Now consider adding sk to C. For

the resulting hull C ′, let V ′ be the set of vertices of C ′, and let S ′out be the set of sites

outside C ′. Note that V ′ ⊆ V ∪ {sk} and S ′out ⊆ Sout \ {sk}. From Lemma 5.2.1 we
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can obtain:

L(C ′) =
∏
si∈V ′

πi ×
∏

si∈S′out

πi

≥
(

πk
1− πk

) ∏
si∈V

πi ×
∏

si∈Sout

πi

=

(
πk

1− πk

)
L(C)

> L(C)

This implies that C is not the most likely hull, contradicting the initial assumption.

5.3.1 The Reduction

Consider an instance of the vertex cover problem for a penny graph G, with the set

{p1, . . . , pn} being the disk centers of the embedding of G. We create an instance of

the most likely hull problem in three dimensions, as follows. All the sites lie on one of

the two paraboloids, P1 : z = x2 + y2 or P2 : z = x2 + y2 − 2. In particular, for each

disk center pi, we create a site ui by vertically lifting pi onto the paraboloid P2. All

these points are assigned a fixed probability πi = α < 1
2
.

The sites on P1 are associated with the contact points pij but are not a direct lifting

of the contact points themselves. Instead, for each contact point pij = (xij, yij), we

define four new points pNij = (xij, yij + δ), pEij = (xij + δ, yij), pSij = (xij, yij − δ), and

pWij = (xij − δ, yij), for some δ > 0. (We set the value of δ later.) Next, we add a set
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Xij of t arbitrary points inside the quadrilateral formed by peij (e ∈ {N,E, S,W}). We

lift each of the peij onto P1 to obtain a site ueij , for e ∈ {N,E, S,W}, and each of these

points is assigned a probability of 1. Finally, the subsets Xij are lifted onto P1 to get

subsets Yij , and each of these points are assigned a fixed probability β > 1
2
. All these

points, lying on the paraboloids P1 and P2, along with their associated probabilities

form the input for our most likely hull problem.

The main idea of the reduction is that we want to “cover” each set Yij by putting

either ui or uj on the most likely hull. In the penny graph, this corresponds to covering

the edge associated with the contact point pij by the vertex associated with pi or pj . We

now describe this relation in more depth, starting with a well-known lemma about the

lifting transform.

Lemma 5.3.3. Consider a point p ∈ R2, and let u(p) be its vertical projection (lifting)

onto the paraboloid P1, and H(p) the hyperplane tangent to P1 at u(p). Then, the

vertical projections u(p′) of all points p′ ∈ R2 at distance r from p lie on a hyperplane

parallel to H(p) whose vertical distance from H(P ) is r2.

Proof. Every plane parallel to H(p) can be represented by the equation Ax + By +

C(z − h) = 0, where (A,B,C) (with C 6= 0) is the normal of the plane with length 1,

and h is the vertical shift from origin. By intersecting such a plane withP1 we obtain the

equationAx+By+C(x2+y2−h) = 0, which we can rewrite as (x+ A
2C

)2+(y+ B
2C

)2 =

h + A2+B2

4C2 . This equation describes a circle with center (− A
2C
,− B

2C
) (independent of
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Figure 5.5: Lift to P1 and P2 (vertically scaled).

h) and radius r2 = h + A2+B2

4C2 . Since the plane is tangent to P1 when r = 0, the result

follows.

The points ui’s (liftings of pi’s) lie on P2, which is a vertical downward shift of P1.

Now, if uij is the point obtained by lifting pij to P1, then by Lemma 5.3.3 the points

ui and uj are vertically 1 unit below the tangent plane of P1 at uij , while the points uk

(k 6= i, j) are at least vertically 1 unit above this plane by Lemma 5.3.1 (see Figure 5.5).

If we treatP1 as an “obstacle”, then ui and uj can “see” uij from below, while the points

uk (k 6= i, j) cannot. Thus there exists a small enough δ > 0 such that Yij is contained

in the convex hull of ueij (e ∈ {N,E, S,W}) with either of ui and uj , but not with uk

(k 6= i, j). The following lemma describes a sufficient upper-bound on δ.

Lemma 5.3.4. If δ <
√

3−
√

2, then the points ui and uj can see the entire quadrilateral

on P1 formed by ueij (e ∈ {N,E, S,W}) from below, but no uk (k 6= i, j) can see any

part of the quadrilateral from below.
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Proof. Let p ∈ R2 be a point inside the quadrilateral formed by peij (e ∈ {N,E, S,W})

and let q ∈ P1 be the point obtained by lifting p. By definition, ‖pi− p‖ ≤ 1 + δ (same

for pj), and by Lemma 5.3.1 ‖pk − p‖ ≥
√

3 − δ for k 6= i, j. We need that ui and uj

are below the tangent plane of P1 at q, and uk (k 6= i, j) is above this plane. Since P2

is 2 units below P1 and by Lemma 5.3.3, ui is below the tangent plane if and only if

‖pi − p‖ <
√

2. The analogue holds for uj . Similarly, we need ‖pk − p‖ >
√

2 for all

uk. Consequently, we obtain two bounds on δ, namely δ <
√

2− 1 and δ <
√

3−
√

2,

of which the latter is the strongest.

Theorem 5.3.5. Computing the most likely hull in three dimensions is NP-hard.

Proof. We show that computing the likelihood of the most likely hull is NP-hard. Given

an instance of the vertex cover problem for penny graphs, we construct an instance of

the most likely hull problem in three dimensions as described above (e.g., with δ =

0.25). We choose t, α, and β such that βt < α, and α < 0.5 < β; e.g., t = 3, α = 0.25,

and β = 0.6. By Lemma 5.3.2 all points on P1 must be on or inside the most likely

hull, and so we only need to choose which points ui (1 ≤ i ≤ n) are on the most likely

hull. No point from a set Yij can be on the most likely hull because then we could add

either ui or uj to the hull and increase the likelihood of the hull, since βt(1 − α) < α.

Thus, the likelihood of the most likely hull is determined by the number κ of points ui

(1 ≤ i ≤ n) that are on the most likely hull, and its likelihood is ακ(1− α)n−κ. Every

point ui on the most likely hull corresponds to a vertex of the penny graph, and by
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construction and Lemma 5.3.4, these vertices form a vertex cover of the penny graph.

Thus the penny graph has a vertex cover of size κ if and only if the likelihood of the

most likely hull is at least ακ(1− α)n−κ. Finally, it is easy to see that the construction

can be performed in polynomial time.

The proof above directly implies that there is no polynomial-time ( α
1−α)-approxima-

tion algorithm to compute the likelihood of the most likely hull unless P = NP . Al-

though we can change the value of α to obtain a stronger bound, we give a more general

argument below.

5.3.2 Inapproximability

The likelihood of a hull is a product of terms. We show that, under mild condi-

tions, NP-hard optimization problems of this form cannot be approximated well by a

multiplicative factor, unless P = NP .

Let O = (I,F , f) be an optimization problem where I is the set of instances, F

is a function over I such that F(I) describes the set of feasible solutions for instance

I , and f is an optimization function over all feasible solutions. For an instance I ∈

I, let |I| denote the size of I . We say that O is product composable if, given any

collection of problem instances I1, . . . , Ik ∈ I, we can construct a new instance I∗ ∈ I

in polynomial time (w.r.t. |I∗|) satisfying the following:

1. |I∗| = ∑k
i=1 |Ii|.
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2. There is a bijection between F(I∗) and F(I1) × . . . × F(Ik) such that for each

solution S ∈ F(I∗) with the matching tuple (S1, . . . , Sk), f(S) =
∏

1≤i≤k f(Si).

3. Given a solution S ∈ F(I∗), one can construct the solutions in its matching tuple

in polynomial time.

In other words, we can form a new instance I∗ by combining the instances I1, . . . , Ik in

an independent way.

Lemma 5.3.6. If a maximization problem O is product composable and cannot be ap-

proximated within a constant c < 1 in polynomial time, then there exists no polynomial-

time 2−O(n1−ε)-approximation algorithm for O, where n is the size of the instance and

ε > 0.

Proof. By changing the constant in the big O notation, we can rewrite the approxima-

tion factor as 2−O(n1−ε) = cO(n1−ε). For the sake of contradiction, assume that there is

a polynomial-time cO(n1−ε)-approximation algorithm of O, and that its output for in-

stance I is given by the function A(I) ∈ F(I). For any instance I , let Opt(I) denote

its optimal solution. Now, consider any instance I of O and let n = |I|. Since O is

product composable, we can construct an instance I∗ containing m = nk copies of

I . We get |I∗| = N = nk+1 and by the bijection property of product composability

f(Opt(I∗)) = f(Opt(I))m. Let (S1, . . . , Sm) (where each Si ∈ F(I)) be the match-

ing tuple of A(I∗) in the bijection. At least one solution in this tuple, say S1, satisfies
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f(S1) ≥ f(A(I∗))1/m. By assumption, f(A(I∗)) ≥ cO(N1−ε) · f(Opt(I∗)). It follows

that

f(S1) ≥ f(A(I∗))1/m ≥ c
O(N1−ε)

m · f(Opt(I∗))1/m = c
O(N1−ε)

m · f(Opt(I))

Since m = N
k
k+1 we can choose, for any ε > 0, a large enough k such that m =

ω(N1−ε). For such an assignment, S1 is computable in polynomial time (in n) and

f(S1) ≥ c · f(Opt(I)). This contradicts with the premise that there is no polynomial-

time c-approximation algorithm for O.

Although the most likely hull problem is not product composable itself, this prop-

erty only needs to hold for a subproblem. The subproblem formed by the instances

used in our NP-hardness reduction is product composable, as we show in the following

lemma.

Lemma 5.3.7. Let I be the set of most likely hull problem instances constructed from

penny graph embeddings using the described construction. Then, the most likely hull

problem restricted to I is product composable.

Proof. Given any collection of instances I1, . . . , Ik ∈ I, we can construct an instance

I∗ ∈ I satisfying the product composability conditions as follows. Let E1, . . . , Ek be

the penny graph embeddings corresponding to I1, . . . , Ik. Without loss of generality,

we assume that the embeddings E1, . . . , Ek are separated by at least a distance of 1.19

19If this is not the case, one can easily translate each Ei to form a new embedding E′i so that E′i is
separated from the other translated embeddings E′j . By construction, the problem instance I ′i that is
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In other words, the penny graphs corresponding to E1, . . . , Ek are disconnected. We

create I∗ by simply taking the union of I1, . . . , Ik, i.e., I∗ =
⋃
i Ii.

Let {s1, . . . , s|I∗|} denote the points in I∗ and {π1, . . . , π|I∗|} be the corresponding

probabilities. Notice that the probability assigned to each point su is the same in both

its original instance (Ii) and the composed instance (I∗).

We now argue that the I∗ satisfies the product composability conditions. It is easy

to see that |I∗| =
∑k

i=1 |Ii|. Before we describe the bijection property, we need some

preliminary arguments.

A feasible solution to a most likely hull problem instance I is a convex polyhedron

C such that the vertices C is a subset of the points in I and C includes all permanent

points in I (points probability with 1). Let Ci be a feasible solution to instance Ii, i.e.,

Ci ∈ F(Ii). Let Vi be its non-permanent vertices (the ones with probability strictly

less than 1). The following “vertex preservation property” is crucial for our proof: the

convex hull of Ci ∪ P for any point set P such that P ⊆ (I∗ \ Ii) contains all points in

Vi as vertices as well. To see this, notice that all points of Vi on the paraboloid P2 are in

convex position with respect to all points in I∗ and thus cannot be covered by any point

combination from I∗. Also, since the embeddings of E1, . . . , Ek are separated and by

Lemma 5.3.4, the remaining points of Vi (on the paraboloid P1) cannot be covered by

implied by E′i has combinatorially the exact same set of feasible solutions and the optimization function
values with the original instance Ii. In other words, given a feasible solution S′i for I ′i , one can compute
in polynomial time a feasible solution Si for Ii such that f(Si) = f(S′i) and vice versa.
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any combination of points from (I∗ \ Ii). This property also implies that any point

p ∈ Ii that is outside Ci is also outside conv(Ci ∪ P ) for any P ⊆ (I∗ \ Ii).

We now describe our bijective mapping. Let C∗ be a feasible solution for I∗, i.e.,

C∗ ∈ F(I∗). Let V ∗ be the non-permanent vertices of C∗. Let Ci be the convex hull

of the permanent points in Ii and the points in Ii ∩ V ∗. It is easy to see that all points

in Ii ∩ V ∗ are the non-permanent vertices of Ci (i.e., Vi as defined earlier). We map

C∗ to (C1, . . . , Ck). The vertex preservation property implies that this mapping is one-

to-one. Given any tuple (C1, . . . , Ck) ⊆ F(Ii) × · · · × F(Ik), one can construct the

corresponding C∗ by simply taking the convex hull of C1, . . . , Ck.

We now show that the bijective mapping satisfies the product composability. In par-

ticular, we show that the likelihood ofC∗ is the product of the likelihoods ofC1, . . . , Ck

(restricted to the points in Ii, . . . , Ik respectively). Let V ∗ be the non-permanent ver-

tices ofC∗ and Vi be the non-permanent vertices ofCi as before. Similarly, letO∗ be the

points in I∗ outside C∗ and let Oi be the points in Ii outside Ci. Finally, let L∗(C∗) be

the likelihood of C∗ (with respect to points in I∗) and let Li(Ci) be the likelihood of Ci

(with respect to points in Ii). Making use of Lemma 5.2.1 and the vertex preservation

property, we write

L∗(C∗) =
∏
su∈V ∗

πu ×
∏
su∈O∗

πu
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=
∏

1≤i≤k

∏
su∈Vi

πu ×
∏

1≤i≤k

∏
su∈Oi

πu

=
∏

1≤i≤k

(∏
su∈Vi

πu ×
∏
su∈Oi

πu

)

=
∏

1≤i≤k

Li(Ci)

Finally, it is easy to see that the bijective mapping is computable in polynomial time.

This completes the proof.

Corollary 5.3.8. For any ε > 0, there exists no polynomial-time 2−O(n1−ε)-approxi-

mation algorithm for the most likely hull problem in three dimensions, unless P=NP.

Finally we observe that one can trivially achieve a 2−n-approximation of the most

likely hull problem as follows: simply take the convex hull of all sites with probability

at least 1
2
. If πi < 1

2
for all i, then the convex hull is empty.

5.4 Most Likely Hull in the Multipoint Model

In this section, we show that computing the most likely hull in the multipoint model

is NP–hard even for two dimensions. For completeness, we begin with some prelimi-

nary information about the most likely hull definition under the multipoint model.

In the multipoint model, the ith point of the input is described by a pair (Si,Πi),

where Si = {s1
i , . . . , s

|Si|
i }, Πi = {π1

i , . . . , π
|Πi|
i } and |Si| = |Πi|. The interpretation is

that the ith point appears at the position sji with probability πji , for j = 1, 2, . . . , |Si|.
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If the sum of probabilities for the ith point (i.e.,
∑

1≤j≤|Si| π
j
i ) is not 1 (in which case

it is strictly less than 1), then it is possible that the ith point does not appear at all in a

probabilistic experiment.

We use S to denote the set of all sites, i.e., S = {sji} and set n = S. For a subset

A ⊆ S, we denote the probability that A is the outcome of a probabilistic experiment

by π(A). Similarly to the unipoint model, the definition of π(A) involves a product of

existence probabilities for all sites in A. The sites that are not in A, however, contribute

to π(A) in a different way. Specifically, let sji be a site that is not in A. If A contains

another sj
′
i site from the ith point, then the non-existence probability of sji is irrelevant

to π(A), because existence of sj
′
i already implies non-existence of sji . If there is no

such site sj
′
i , then no site from the tuple of the ith point is in A. In that case, we just

consider the probability that ith point does not exist at all, which is 1 −∑1≤j≤|Si| π
j
i .

Finally, notice that if A contains two sites from the same uncertain point, then it cannot

be the outcome of an experiment. This implies the following definition for π(A):

π(A) =



0 if there are two distinct sites

sji and sj
′
i in A

∏
sji∈A

πji ×
∏

i | 6∃j.sji∈A

(
1−

∑
1≤j≤|Si|

πji

)
otherwise
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The definition for the most likely hull follows from π(A) as in the unipoint model case.

That is, the most likely convex hull is the polytope C which maximizes the likelihood

function L(C), which is defined as

L(C) = Pr
[

conv(A) ≡ C
]

=
∑
A⊆S

conv(A)≡C

π(A)

5.4.1 The Reduction

Our NP-hardness proof uses a reduction from NP-hard problem 3-SAT [42]. The

3-SAT problem takes as input a conjunctive normal form boolean formula where each

clause contains 3 variables and asks if this formula is satisfiable. Consider a 3-SAT

instance (V, U) where V is the set of the variables and U is the set of clauses. We

first construct 6|U | points on the unit circle. We call these points the anchors and use

them as permanent points (i.e., points with probability 1) in our hull problem instance.

Between each pair of consecutive anchors, we place a single point on the unit circle

that we call a spike. (See Figure 5.6a.) We assign an independent existence probability

of 1
2

to each spike. As we will explain shortly, the main idea of our construction is that

the most likely hull includes all spikes in its interior if and only if the 3-SAT instance

is satisfiable.

For each variable v, we construct two additional sets of points, one corresponding

to the case that v is true and one corresponding to the case that v is false. In particular,

for each clause u that v appears in positive form, we construct a point puv covering a
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(a)

puv

pu
′
v

pu
′′
v

tv

(b)

quv′

quv′′quv

(c)

Figure 5.6: (a) Anchors (black squares) and spikes (gray circles) on the unit circle. (b)

Construction of tv. (c) The three points constructed for clause u.

single spike, at the intersection of the lines tangent to the unit circle at the two anchors

next to the spike. We assign each puv a probability of 1
2

but this probability is dependent,

as we will put pvu; we will put more sites for the uncertain point that hosts pvu in the rest

of the construction. We construct all points pvu for a single variable v over a consecutive

sequence of spikes, and then put a single point tv covering the constructed points. (See

Figure 5.6b.)

We apply the same construction for all clauses that v appears in negated form. This

creates an additional set of points pvu, all of which we cover with a single point fv as

we did for tv. We associate tv and fv with the same uncertain point and assign each a

probability of 1
2
. That is, in a probabilistic experiment, either tv or fv is present (with

equal probability), but not both. Existence of tv is meant to imply that v is assigned

true, whereas the existence of fv is meant to imply that v is assigned false.

181



Chapter 5. The Most Likely Convex Hull of Uncertain Points

Finally, for each clause u, we construct three additional points covering a single

spike. These points are constructed in such a way that: (1) they do not cover any other

spike, and (2) they are in convex position with respect to each other and the two anchors

next to the covered spike. Each of these points corresponds to a distinct variable v that

appears in the clause. We denote the point associated with variable v by quv . (See Figure

5.6c.) We assign each quv to the uncertain point that the previously constructed point puv

was assigned to and set its probability to 1
2
. That is, in an experiment, either quv or puv

exists (with equal probability), but not both.

Lemma 5.4.1. The most likely hull has likelihood (1/2)3|U |+|V | if and only if it contains

all spikes in its interior. Otherwise, its likelihood is at most (1/2)3|U |+|V |+1.

Proof. Let C be the most likely hull. For ease of reference, let us say that the outcome

A of a probabilistic experiment is compatible with C if conv(A) = C. Notice that

all experiment outcomes A compatible with C contain a particular configuration of the

dependent point pairs. In particular, if C contains a point tv as a vertex, then all com-

patible outcomes contain tv and not fv. Otherwise, all compatible outcomes contain fv

and not tv. Similarly, if C contains quv as a vertex, then all compatible outcomes contain

quv or puv otherwise. The probability that these configurations exists in the outcome of

an experiment is (1/2)3|U |+|V | because there are 3|U | + |V | dependent point pairs. If

C contains all spikes in its interior, then the existence of spikes are irrelevant to the

likelihood of C, thus L(C) = (1/2)3|U |+|V |. Otherwise, compatibility with C is also
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conditioned on either existence or non-existence of at least one spike. This implies

L(C) ≤ (1/2)3|U |+|V |+1.

We now describe how the satisfiability of the 3-SAT instance relates to our con-

struction. We first give a high-level idea and then give the formal proof in a lemma.

Consider a variable v. Notice that, if the most likely hull covers all spikes below tv,

then either tv or all points puv below tv appears in the hull as a vertex. If tv appears in

the hull, then the hull can pass through the points quv (which are in the same probabilis-

tic tuples with points puv ), and cover spikes representing the clauses that v appears in

positive form. This corresponds to the case that v is assigned true and all corresponding

clauses are satisfied. Similar notion also applies to fv and the clauses that v appears in

negated form. If all spikes are covered, then all clauses are satisfied and so is the 3-SAT

instance. Combining this idea with Lemma 5.4.1, we deduce the following lemma.

Lemma 5.4.2. The 3-SAT instance is satisfiable if and only if the most likely hull has

likelihood (1/2)3|U |+|V |.

Proof. We first show that if the most likely hull has likelihood (1/2)3|U |+|V | then the 3-

SAT instance is satisfiable. Let C be the most likely hull with likelihood (1/2)3|U |+|V |.

By construction, C contains exactly one of the sites tv and fv as a vertex for each

variable v. Consider the boolean assignment where we assign the variable v to true if

tv is a vertex, and to false if fv is a vertex. We now argue that this assignment satisfies
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all clauses in the 3-SAT instance. Take any clause u. By Lemma 5.4.1, C contains all

spikes in its interior. Consequently at least one point quv is a vertex of C. Then, the

dependent point puv is not a vertex of C. By construction, C covers the underlying spike

with tv if v appears in positive form in u or with fv if v appears in negated form. This

implies that u is satisfied by the assignment of v.

We now prove the converse. Suppose that there is a satisfying variable assignment

for the 3-SAT instance. We construct a subset Q of points as follows. We insert to Q tv

if v is assigned true and fv if v is assigned false. Additionally, for each variable-clause

pair (v, u) we insert quv if v is a satisfying variable for u or puv otherwise. Finally, we

insert all anchor points. Observe that Q is a valid outcome of a probabilistic experi-

ment. We now argue that the convex hull of Q covers all spikes and thus has likelihood

(1/2)3|U |+|V | by Lemma 5.4.1. The spikes under all points puv ∈ Q are trivially covered.

For each point puv 6∈ Q, v is a satisfying variable for u, and thus the spike under puv is

covered by either tv or fv (whichever is the one above puv ). Finally, since all clauses are

satisfied, each spike under a triplet of points quv , quv′ and quv′′ are also covered (at least by

one of them). This completes the proof.

Easily following from Lemma 5.4.2, we state the following theorem.

Theorem 5.4.3. Computing the most likely hull in the multipoint model is NP-hard.
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Lemma 5.4.1 in fact implies a stronger result: It is NP-hard to compute the like-

lihood of the most likely hull within any factor c > 1
2
. By construction, the problem

instances that we create are product composable. Then, by Lemma 5.3.6, we can state

the following theorem.

Theorem 5.4.4. For any ε > 0, there exists no polynomial-time 2−O(n1−ε)-approxi-

mation algorithm for the most likely hull problem in the multipoint model unless P=NP.

5.5 Extensions and Concluding Remarks

Algorithms for computing or estimating succinct summary hulls are a useful tool

in the analysis of uncertain geometric data. While we focused exclusively on the Most

Likely Hull, our techniques are applicable to several other ways of defining the “best”

hull. Any useful definition of the likely hull must include a penalty function for misclas-

sifying points, both false positives and false negatives. If only false negatives (points

outside the hull) are penalized, then the convex hull of all the points has the best score.

Our dynamic programming algorithm for the unipoint model in 2 dimensions can be ex-

tended for several natural scoring functions. Although entries may need to be computed

differently, the subproblem structure utilized by the dynamic programming algorithm

also applies to these other settings.
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For instance, one simple scoring function measures the agreement on the “in” and

”out” classification. A convex hull C splits the point set into two parts: inside and

outside. We can measure the “quality” Q(C) of a hull C by its expected agreement

with a random hull’s classification: the number of points of S whose classification (in

or out) is the same for both C and the hull of a random outcome. Both our dynamic

programming algorithm for computing the hull in 2 dimensions, and the hardness in 3

dimensions, under the unipoint model carry over to this “Symmetric Difference Hull”

definition. Similarly, another scoring function for measuring the fraction of points cor-

rectly classified counts the number of points in the random outcome that lie in C plus

the number of non-sample points that lie outside C. Our results for the unipoint model

hold for this type of scoring as well.

In summary, we believe that the study of geometric structures over probabilistic

data is a fundamental problem, and our results are only a first, but promising, step.
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Conclusion

In this dissertation, we have made contributions to the computational study of two

geometric concepts: volumes and convex hulls. The focus of our work was on vari-

ations of Klee’s Measure Problem and convex hulls under uncertainty. We developed

efficient algorithms and showed hardness results for both type of problems. Neverthe-

less, many problems still remain open and both concepts are likely to be a subject of

substantial future research.

In Chapter 1, we studied the “grounded” case of Klee’s Measure Problem. We

showed that improvements on the general upper bound are possible as long as the in-

put boxes are k-grounded for k ≥ 2. Our algorithm also improved the bound for the

hypervolume indicator problem for certain dimensions. There is currently an active

research on Klee’s problem for both its general form and its special cases in the compu-

tational geometry community. Therefore, future research is likely to bring even more

improvements.
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In Chapter 2, we investigated Klee’s problem on uncertain boxes. We showed that

the expected volume of uncertain boxes is computable in polynomial time despite the

fact that its probability distribution is NP-hard to compute. We also developed an ef-

ficient data structure to maintain the expected volume of a set of boxes that undergoes

insertions and deletions. However, our structure has a significant space usage and the

problem of maintaining the volume with a near-linear space data structure is still open.

In Chapter 3, we developed an efficient dynamic data structure for a discrete version

of Klee’s problem. The structure also allowed reporting queries and the maintenance

of an uncertain measure. All our update times are sublinear, however, they are signif-

icantly better for point updates than for box updates. It is not yet known if there is a

tradeoff between point and box updates, and if one can design a structure with better

box update times while keeping point update costs acceptable.

In Chapter 4, we investigated convex hulls under uncertainty. To this extent, we

examine two probabilistic models: one has only existential uncertainty, while the other

couples it with locational uncertainty. For both models, we described efficient algo-

rithms to compute the convex hull membership probability of a given query point. We

also introduced the probability map structure and showed how to compute it efficiently

in two dimensions. On the other hand, it remains an open problem to efficiently com-

pute the membership probability for degenerate point sets in high dimensions.
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Conclusion

In Chapter 5, we studied the most likely convex hull, the mode of the convex hull

variable, under both probabilistic models from Chapter 4. We described a cubic-time

dynamic programming algorithm to compute the most likely hull in two dimensions

when only existential uncertainty is present. We also showed that it is NP-hard to

compute the most likely hull in higher dimensions or in the presence of locational

uncertainty and gave an inapproximability result. Our results are a promising step

towards understanding the complexity of geometric structures over uncertain data and

future research on uncertain data is likely to produce many more interesting results.
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[60] M. Löffler and M. J. van Kreveld. Largest bounding box, smallest diameter, and
related problems on imprecise points. Computational Geometry, 43(4):419–433,
2010.
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