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ABSTRACT

NUMERICAL IMPLEMENTATION AND ANALYSIS OF A POROUS
PLASTICITY MODEL FOR DUCTILE DAMAGE PREDICTION

Erdoğan, Can

M.S., Department of Aerospace Engineering

Supervisor: Assoc. Prof. Dr. Tuncay Yalçınkaya

January 2021, 82 pages

Ductile damage and fracture are known to be driven by the microvoid nucleation,

growth, and coalescence. Porous micromechanical description of the ductile met-

als led to many phenomenological material models, which are used to predict the

damage and fracture in engineering structures. In this thesis, the assessment of a rate-

independent porous plasticity model is done through the representative volume ele-

ment (RVE) calculations. The model is based on the formalism presented in [1] which

is implemented as a user material subroutine through a prediction-correction scheme

similar to a classical J2 plasticity framework. In this context, RVE’s are taken from a

periodic array of spherical voids surrounded by an elastoplastic matrix material with

isotropic exponential hardening, and they are deformed under a constant triaxial stress

state with a displacement controlled method. The implementation of the model and

the method of the RVE calculations are explained in detail. Limitations of the orig-

inal model are discussed, and a heuristics extensions to the constitutive framework

is proposed to obtain a better fit between the porous model and the unit cell results

in terms of volumetric void growth and equivalent stress-strain relation. Numerical

analyses show the possibility of achieving a compact framework with a straightfor-
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ward implementation that agrees well with the RVE simulations for a wide range of

stress triaxiality values. The present framework is compared with the widely used

Gurson-Tvergaard-Needleman (GTN) model and the differences are discussed. A

simple void coalescence relation is added to this framework to simulate the final fail-

ure phase of ductile deformation. Additionally, tension simulations with smooth and

blunt notched specimens are performed with the GTN model, the present porous plas-

ticity model, and the Johnson-Cook uncoupled damage model to address the model’s

performance in a ductile fracture simulation. Results show that the present frame-

work and the GTN model can yield almost identical results in notched simulations in

terms of engineering stress-strain response and the porosity evolution. The thesis is

concluded with an outlook and possible future improvements.

Keywords: Porous Plasticity, Representative Volume Element, Ductile Damage, Frac-

ture
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ÖZ

SÜNEK HASAR TAHMİNİ İÇİN GÖZENEKLİ BİR PLASTİSİTE
MODELİNİN SAYISAL UYGULAMASI VE ANALİZİ

Erdoğan, Can

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Tuncay Yalçınkaya

Ocak 2021 , 82 sayfa

Sünek hasar ve kırılmanın mikro boşluk oluşumu, büyümesi ve birleşmesinden kay-

naklandığı bilinmektedir. Sünek metallerin gözenekli mikromekanik tanımı, mühen-

dislik malzemelerinde hasar ve kırılmayı tahmin etmek için kullanılan birçok fenome-

nolojik malzeme modeline yol açmıştır. Bu tezde, hızdan bağımsız bir porlu plastisite

modelinin değerlendirmesi, temsili hacim elemanı (THE) hesaplamaları aracılığıyla

yapılmıştır. Model, [1]’de sunulan formulasyona dayanmaktadır ve klasik bir J2 plas-

tisite uygulamasına benzer bir deneme-düzeltme şeması aracılığıyla kullanıcı mal-

zeme altprogramı olarak uygulanmıştır. Bu bağlamda, THE’ler izotropik üstel sert-

leşmeye sahip elastoplastik bir matris malzemesi ile çevrili periyodik küresel boşluk

dizisinden alınmış ve yer değiştirme kontrollü bir yöntemle sabit üç eksenli gerilim

altında deforme edilmişlerdir. Modelin uygulanması ve RVE hesaplamalarının yön-

temi ayrıntılı olarak açıklanmıştır. Orijinal modelin sınırlamaları tartışılmıştir. Ha-

cimsel boşluk büyümesi ve eşdeğer gerilim-gerinim ilişkisi açısından model ile THE

sonuçları arasında daha iyi bir uyum elde etmek için modele bir modifikasyon öneril-

miştir. Sayısal analizler, bütün üç eksenli gerilim değerleri için THE simülasyonları

vii



ile uyum gösterebilen ve uygulaması basit olan kompakt bir modelin elde edilebi-

leceğini göstermiştir. Yaygın olarak kullanılan Gurson-Tvergaard-Needlman (GTN)

modeli ve mevcut model ile karşılaştırmalar yapılmıştır ve farklılıklar tartışılmıştır.

Sünek malzemelerde son kırılma aşamasını simüle etmek için bu modele basit bir

boşluk birleştime ilişkisi katılmıştır. Ek olarak, sünek kırılma simülasyonlarnda mo-

delin performansını ele almak için GTN modeli, mevcut gözenekli plastisite modeli

ve Johnson-Cook ayrık hasar modeli ile düz ve keskin olmayan çentikli çekme nu-

muneleri ile kırılma simülasyonları gerçekleştirilmiştir. Sonuçlar, mevcut modelin ve

GTN modelinin çentikli numunelerde mühendislik gerilim-gerinim ilişkisi ve poro-

zite değişimi açısından neredeyse aynı sonuçları verebildiği gösterilmiştir. Tez, genel

bir bakış açısı ve gelecekteki olası iyileştirmelerle sonuçlandırılmıştır.

Anahtar Kelimeler: Porlu Plastisite, Temsili Hacim Elemanı, Sünek Hasar, Kırılma
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CHAPTER 1

INTRODUCTION

One of the most critical concepts in material science and engineering is the fracture

phenomenon. There are mainly two possible modes of fracture in engineering ma-

terials, namely ductile and brittle. The difference between these two mechanisms is

the amount of plastic deformation before the fracture. Brittle fracture occurs with

minimal plastic deformation, and small cracks can quickly lead to complete failure of

the material, which is an undesirable property for an engineering material. A small

plastic zone develops ahead of the crack tip, and the phenomenon is called small scale

yielding. On the other hand, ductile materials show large plastic deformations before

separation with more stable and predictable crack propagation. The plasticity does not

occur only ahead of the crack tip. It rather spreads largely in the specimen. There-

fore it is referred to as large scale yielding. Ductile fracture is known to be the most

commonly observed fracture mode in engineering metals at room temperature; thus,

it is essential to understand the fundamental mechanisms especially for manufactur-

ing and metal forming applications where excessive plastic deformations are present.

The ductile fracture mode is known to be driven by the microvoid nucleation, growth

and coalescence. With the early observations on the porous mechanism of ductile

fracture [2] and computational works [3, 4], a serious amount of research is focused

on the area for more than 50 years in terms of both micromechanical examinations

through experimental and computational studies and predictive modeling techniques.

The micromechanical phenomena behind the ductile fracture are explained briefly in

the following section.
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1.1 Micromechanical aspects

The void nucleation phase is linked to the second phase particles, or inclusions [5].

Microvoids or pores nucleate at the boundary of a second phase particle or an inclu-

sion and matrix material. Alternatively, voids formation can occur by internal crack-

ing of the hard second phase particles (see Figure 1.1). Nucleation by debonding is

usually the mechanism with the soft matrix materials, and nucleation mode changes

to particle cracking as the matrix material gets harder (see [6]). The mode of nucle-

ation depends on factors such as the hardening behavior of the matrix, the inclusion

or particle geometry, and the stress state (see e.g. [7–9]). Although it is intuitive to

assume that the voids nucleate under tensile loads, it is shown that shear can also

cause void formation by debonding of the particle and the matrix interface (see [10]).

It should be noted that the void nucleation cannot be captured macroscopically be-

cause the size of the second phase particle or inclusion is relatively small to bring any

significant porosity.

(a) (b)

Figure 1.1: Different mechanism of void nucleation. (a) Decohesion of the particle-

matrix interface, (b) particle cracking, from [11].

The ductile damage initiates with the void nucleation and continues with void growth.

Microvoid growth is driven by the plastic deformation of the surrounding matrix. The

growth is studied on artificially inserted holes under tension in [12] (see Figure 1.2).

Voids first elongate vertically in the loading direction. Then, the deformation mode

changes due to necking induced increase in the stress triaxiality around the voided

2



region, and voids start to extend horizontally. The prominent effect of stress triaxiality

on the void growth is reported in literature (see e.g. [13–18]). A substantial increase in

void growth is observed with increasing stress triaxiality. Consequently, the fracture

strain decreases dramatically as shown by Cox and Law [19] through tensile tests of

notched specimens. Stress triaxiality is the ratio of the hydrostatic stress to the von

Mises equivalent stress formulated as

T =
σh
σeq

, (1.1)

and it is considered to be the primary factor in the evolution of ductile damage through

the void growth mechanism.

(a) (b) (c) (d)

Figure 1.2: The growth and the coalescence of artificially inserted voids in a sheet

metal, from [12].

Although the effect of stress triaxiality is clear, it was shown that the Lode parameter,

which is related to the third invariant of stress, also has a notable effect on ductil-

ity [20]. Experiments on double notched tube specimens under combined tension

and shear indicate that ductility drops under shear dominated loads (L ≈ 0). Lode

parameter is defined as

L =
2σII − σI − σIII

σI − σIII
(1.2)

where σI , σII and σIII are the principal stress components with σI ≥ σII ≥ σIII .

The final stage of the fracture process in ductile materials is void coalescence. Coales-

cence is considered to cause failure in two distinct mechanisms according to Tekoğlu

et al. [21]. First mode occurs after significant void growth taken over by the plas-

tic flow localization between adjacent voids that cause internal necking (see Figures

1.2c, 1.2d, 1.3a, from [12,19]). The second one is by internal shearing of the ligament
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between voids (see Figure 1.3b, from [19]). Shear can link two distant voids, which

causes a shear band to occur. The deformation localizes, and fracture proceeds in this

so-called thin void sheet. Eventually, microcracks initiate from the void coalescence

sites, and with further straining of the material, crack propagation causes fracture.

(a) (b)

Figure 1.3: Mechanisms of void coalescence. (a) Internal necking, (b) internal shear-

ing, from [19].

1.2 Modelling of ductile damage and failure

The porosity based micromechanical description of the ductile failure in metallic al-

loys led to many different modeling approaches in the literature. The focus will be

on the Continuum Damage Models (CDM) in the current work. In CDM, instead of

incorporating the micromechanical properties directly into the simulation, they are

phenomenologically presented by internal parameters in the constitutive equations.

The most basic models include a stress reduction factor based on a single damage

parameter, D, as σ = (1 − D)σ, first introduced in [22]. Empirical relations are

usually preferred for the evolution of D based on experimental studies or analytical

derivations (see e.g. [23, 24]). These models where the stress is directly affected by

the damage parameters are known as coupled models. Another approach to the duc-

tile fracture modeling is based on the uncoupled models, where the damage induced

material degradation is disregarded until the onset of failure of the structure. The ad-
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vantage is that the implementation of such models is relatively easy, and the compu-

tational cost is reduced compared to the coupled models while having similar predic-

tion capabilities. The uncoupled approach usually utilizes a surface-based prediction

where the fracture surface is defined by D, and the evolution of D is based on strain

and stress state. One example of the fracture surface models is the Johnson-Cook

(JC) model [25] where the damage predictions are made in terms of stress triaxiality,

strain rate and temperature. Some recent models are the modified Mohr-Coulomb

model (MMC), which has been extensively used in rock and soil mechanics and ex-

tended to ductile fracture in [26], and Hasford-Coulomb (HC) model [27], which is

an extension of the MMC model. The MMC and HC and other models in [28, 29]

use a definition based on stress triaxiality and Lode parameter to predict a fracture

surface.

The first studies on the continuum modeling of ductile damage and fracture directly

derived from porous bodies are conducted by McClintock [3] and Rice and Tracey [4]

using cylindrical and spherical isolated voids in a rigid-perfectly plastic infinite ma-

trix material. The Rice and Tracey model was later extended by Huang [30] for the

dilatation rates at different stress triaxiality regions. Also, an uncoupled model is de-

rived from the Rice and Tracey model in [13]. Another coupled model is proposed by

Rousselier [31] based on the continuum damage mechanics and thermodynamics fol-

lowing the work of Lemaitre [32]. An extension is proposed to the Rousselier model

based on the unit cell simulations in [33]. Although coupled models are computation-

ally more intensive, they provide a more realistic description of the damage evolution,

and they also account for the degradation of stress carrying capacity, which results in

strain localization leading to the final failure.

Another phenomenological ductile damage model was introduced by Gurson [34]

using upper-bound limit load analysis for the deformation of spherical and cylindrical

voids in a plastic matrix. The Gurson model uses only the void volume fraction, f ,

as the damage variable. The evolution of f is governed by the incompressibility

of the plastic matrix material as, ḟ = (1 − f)tr(ε̇p). The model also utilizes a

correction for the hardening of the material since a voided body does not strain harden

as a homogeneous one. Correction is done through a plastic work equality given

by (1 − f)σ̄ ˙̄ε = Σ : Ė, where the σ̄ & ε̄ are the equivalent stress and strain of
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the microscopic voided body and Σ & E are related to the macroscopic response.

Additionally, the plastic flow is found from the associative flow rule in the Gurson

model. It should be noted that the original model can only predict the growth of

existing pores and disregards the nucleation of new voids. Void nucleation criterion

is added to the Gurson model in [35] using a statistical approach. Recently nucleated

voids simply added to the currently growing voids with f = fG + fN . The yield

potential of Gurson model is extended based on a bifurcation study by Tvergaard

[36, 37]. Extension is done using q1 and q2 parameters and the modified potential is

given in the following equation

φ =
σeq
σy

+ 2q1fcosh(
3q2σm
2σy

)− (1 + q2
1f

2). (1.3)

Although these parameters are initially used to account for void interaction effects,

studies have shown that they are not universal and they depend on the loading con-

ditions and geometry (see [38–40]). Consequently, they are mostly used to fit the

Gurson model for different materials and loading states. Void coalescence relation

is introduced in [41] to simulate the rapid loss of stress carrying capacity at the final

failure phase of the deformation. The coalescence model uses an effective porosity

relation shown in the following equation

f ? =

 f if f ≤ fc

fc + κ(f − fc) if f > fc.
(1.4)

Porosity, f , is replaced by the effective porosity, f ?, in the yield potential which

artificially increases the porosity after a critical value and accelerates the void growth.

In Eq. (1.4), fc is the critical porosity and κ determines the acceleration level of the

void growth. With the initial model of Gurson and improvements of Tvergaard and

Needleman, this formulation is called the GTN model which has been one of the most

referenced computational porous plasticity models.

Several extensions for the GTN model have been proposed. Void shape effects are

incorporated in the Gologanu-Leblond-Devaux (GLD) model [42–44]. Effect of the

Lode parameter is added in terms of an additional void evolution term based on shear

loads in [45–47]. The performance of the shear modified Gurson model is addressed

in [48,49]. The former uses unit cell analysis, while the latter makes comparisons with

experiments and also compares with the uncoupled MMC fracture model. Moreover,
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plastic anisotropy [50], void size effects [51–53] and recently hydrogen microvoid

interaction [54] are included in a GTN type framework. Although more advanced

forms of the GTN model have been suggested, the original form of the model is still

being used to anticipate damage and fracture in ductile metals (see [55]).

Similar to the analysis of Gurson, an alternative yield potential for a porous plastic

body is proposed by Cocks [1] using a lower-bound limit analysis for the growth

of a spherical void. The priority of the regarding model was simplicity; thus, the

present constitutive framework is more straightforward and compact compared to the

models mentioned previously. The model has the porosity, f , as the only damage

variable. The yield potential utilizes an effective stress expression, which includes

both von Mises equivalent and hydrostatic stress along with two functions of void

volume fraction, f , affecting the two parts of the stress state separately. The model’s

effective stress is only a function of stress and porosity and does not depend on yield

stress, which is a fundamental difference from the Gurson model. Subsequent works

in [56–60] use similar potentials for porous bodies but only for the viscoplastic ma-

terials. Cocks initially proposed formulations for both rate-independent and creeping

porous materials; however, such models are used solely for the prediction of creep

phenomenon or to analyze the densification of metal powders. Both of these ap-

plications include a rate-dependent formulation. One of the primary focuses of the

current thesis is to utilize the rate-independent yield potential for the ductile damage

prediction which has not been addressed in the literature.

It is necessary to mention the representative volume element (RVE) analysis for the

predictive modeling of ductile damage and fracture. An RVE can be considered as

a small finite portion of a material that carries the micromechanical properties. In

the context of porous materials, the real material with different grain orientations,

second phase particles, and random distribution of voids is idealized as a homoge-

neous elastoplastic material with a periodic distribution of voids. RVE’s are taken

from an idealized material, as shown in Figure 1.4, and they are usually deformed un-

der constant stress triaxiality and Lode parameter. This approach, first introduced by

Needleman [61], has been a convenient numerical tool to investigate void evolution in

terms of shape and volume, void coalescence, and subsequent material degradation.

RVE’s are mainly adopted to gather information about the micromechanics of voids
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and the results are used for the evaluation and calibration of continuum damage and

fracture models. The pioneering work by Koplik and Needleman [38] is conducted

through axisymmetric voided RVE models, and the results are used to identify the

fitting parameters of the GTN model. Different aspects of the micro-void growth and

coalescence mechanisms are studied extensively in the literature. Similar to the work

of Koplik and Needleman, the combined effect of initial porosity and stress triaxi-

ality is studied in [62]. The effect of initial void shape is studied by Pardoen and

Hutchinson [63] using initially non-spherical voided axisymmetric RVE’s under con-

stant triaxiality. They proposed a coalescence model considering the void shape. The

effect of Lode parameter is studied in [64,65] utilizing 3D RVE models under constant

T and L. Studies indicate that as the load gets shear dominant, ductility decreases,

and the fracture mode changes from internal necking to internal shearing. Addition-

ally, crystal plasticity based analysis is conducted on such RVE models in [66–68] to

examine the effect of grain orientation on void shape and growth.

Figure 1.4: Idealized system of periodic void distribution and an RVE element in 2D.

Moreover, void nucleation has been studied through RVE analysis by replacing the

void with an inclusion or second phase particle. Works in [69, 70] examined the lo-

cal stress and strain with the assumption of perfect bonding between the matrix and

the inclusion. Another approach is using the cohesive zone elements to simulate the

separation of particle and the matrix (see [71]). Cohesive elements are placed be-

tween the inclusion and the matrix in finite element (FE) model, and the nucleation is

simulated with the separation of the cohesive element. Shabrov and Needleman [72]
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extended the cohesive zone approach and studied the effects of multiple inclusions

and inclusion distribution in the matrix.

Although there have been numerous studies on the poro-mechanical damage and frac-

ture models, they have mostly focused on frameworks based on the Gurson model.

The advanced models, such as the GLD model [44] or the shear modified Gurson

model [46], have been proven to improve the existing frameworks, which brings

complexity and additional parameters to deal with. Such models are highly capa-

ble for the analysis of micro-void mechanisms. However due to the complicated

formulations of such models, their usage is limited in engineering applications. The

current thesis aims to provide a simple constitutive framework and implementation

scheme for an alternative porous plasticity formulation based on the yield potential of

Cocks [1]. The implementation is done following a basic predictor-corrector scheme

with a numerical calculation of consistent tangent modulus. The model is assessed in

the context of rate-independent ductile damage and fracture through RVE simulations

performed on 3D finite element models. An extension is proposed for the framework

based on the RVE results and the model’s predictions. The performance of the model

is addressed using tension simulations on smooth and notched bars, and comparisons

are made with the well-known GTN model and the Johnson-Cook uncoupled fracture

model.

The organization of the theses is as follows. In Chapter 2, the formulation is shown

and the implementation is discussed in detail. The RVE study is explained in Chapter

3, and in Chapter 4, the results are presented and discussed for both the RVE study

and the porous plasticity model together with the tension simulations. The thesis is

concluded with an outlook and future remarks in Chapter 5.
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CHAPTER 2

FORMULATION AND IMPLEMENTATION OF THE POROUS

PLASTICITY MODEL

2.1 Formulation of the model

The constitutive formulation of the rate-independent porous plasticity model is pre-

sented in this section. The model employs the below presented form of the yield

potential initially proposed in [1] which includes effective stress, σ̄, and yield stress,

σy. The potential is obtained based on the limit analysis of a plastic body containing a

hexagonal periodic array of spherical voids. The representation of the yield potential

is similar to a classical von Mises plasticity model with an additional dependence on

the mean stress and two porosity functions g1 and g2. Effective stress is only a func-

tion of local stress, σ, and porosity, f ; thus, yield stress can be treated separately in

this model, which is a condition that is not observed in the Gurson type models:

φ = σ̄ − σy =

√
σ2
eq

g1(f)
+

σ2
m

g2(f)
− σy (2.1)

where g1 and g2 are the functions of void volume fraction f , σeq is the von Mises

stress, σm is the hydrostatic or mean stress and they can be defined as

σeq =

√
3

2
dev(σ) : dev(σ), σm =

1

3
(tr(σ)). (2.2)

In Eq. (2.2), tr(σ) is the trace of the stress tensor (tr(σ) = σii = σ11 + σ22 + σ33),

dev(σ) is the deviatoric part of the stress tensor (dev(σij) = σij − 1
3
σkk δij) and ’:’

is the double contraction operator. In the present thesis, bold symbols are used to

represent second order tensors (e.g. σ, ε).
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The porosity functions proposed in [1] are

g1(f) =
(1− f)2

1 + 2
3
f
, g2(f) =

2

9

(1 + f)(1− f)2

f
. (2.3)

The behavior of porosity functions is illustrated in Figure 2.1 together with the shape

of yield surface in terms of equivalent and the mean stress, which shows a hydrostatic

stress dependent yield behavior. Note that with the given g functions, the model

recovers the original von Mises plasticity at zero porosity.

The initial proposition of the model uses the basic kinematic void growth relation, as

ḟ =
d

dt

(
Vf
V

)
(2.4)

where Vf is the volume of voids and V is the total volume of the body. Since the

matrix around the void is assumed to be incompressible, it can be concluded that

the volume change in a body can only originate from the volume of voids; hence,

V̇f = V̇ . Then, the evolution of porosity can be found as follows:

ḟ =
d

dt

(
Vf
V

)
=
V̇fV − V̇ Vf

V 2
=

(
V − Vf
V

)
V̇f
V

=

(
1− Vf

V

)
V̇

V
. (2.5)

Since Vf/V = f and V̇ /V can be defined as ε̇v(= ε̇ii) with the small strain assump-

tion, then Eq. (2.5) can be stated as,

ḟ = (1− f)tr(ε̇p) = (1− f)ε̇pv. (2.6)

Here, it is also assumed that the elastic deformations have a negligible effect on void

growth. It should be noted that, the current formulation can only predict the growth

of existing voids and does not include void nucleation.

Plastic part of the strain is calculated from the associative flow rule, as

ε̇p = γ̇
∂φ

∂σ
(2.7)

where γ is the flow multiplier, and the direction of the plastic flow increment is as-

sumed to be ∂φ/∂σ, which also means that the plastic flow is in the normal direction

to the yield surface. Due to the mean stress dependence on yield function, Eq. (2.7)

can also provide hydrostatic part of the plastic strains which is required for the poros-

ity evolution.
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Figure 2.1: (a) Evolution of the porosity functions vs f , (b) yield surface representa-

tion of the porous plasticity model at different porosity levels.

Preliminary results using the model has recently been presented at a conference pro-

ceeding [73] using slightly different porosity functions in the yield potential. Al-

though the model can anticipate the void growth and equivalent stress-strain relation

at moderate to low stress triaxiality, it had certain issues at high stress triaxiality
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regimes. The performance of the model was also demonstrated by a necking simu-

lation. It should be noted that it is possible to get similar results with the porosity

functions in [73] and the original suggestions of Cocks in [1]; however, the g func-

tions of Cocks are used in the current study in order not to add extra variables.

2.2 Numerical implementation

In this section, numerical implementation of the porous plasticity model is demon-

strated in detail. Solution of the nonlinear constitutive equations requires a local

numerical integration scheme within the global finite element algorithm. The local

integration is performed in the material subroutine (UMAT, [74]) in commercial finite

element program Abaqus employing the classical radial return algorithm with elastic

predictor and plastic corrector steps. In the UMAT subroutine, Abaqus provides the

total strain for the current increment and expects users to calculate the stress and the

consistent tangent modulus. The numerical implementation of the model covers the

procedure to compute the stress and consistent tangent modulus using the constitutive

formulations of the porous plasticity model along with the incremental update of the

state variables.

Procedure for the present model follows the basic von-Mises (J2) plasticity frame-

work. The conditions can be stated as follow:

1. The material is linear elastic before the yield point. In the elastic regime, stress

is governed by the Hooke’s law. Elastic region is restricted by the yield surface,

φ.

2. The evolution of the yield surface is governed by both the yield stress (σy) and

the porosity (f ). Note that 0 ≤ f ≤ 1.

3. Loading/Unloading conditions: If the loading is elastic, φ < 0, then no plastic

flow occurs, γ̇ = 0 & ḟ = 0. If the material deforms plastically, φ = 0, then

γ̇ > 0 & ḟ 6= 0, and the stress cannot go beyond the yield surface, φ ≤ 0.

4. Strain is decomposed additively into elastic and plastic parts, ε = εe + εp.
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Note that, the tensorial variables are stored as matrices in the Voigt notation in UMAT

subroutine. Therefore, stresses and strains are as 6x1 vectors and tangent modulus,

C, is a 6x6 matrix as

σ =



σ11

σ22

σ33

σ12

σ13

σ23


, ε =



ε11

ε22

ε33

γ12

γ13

γ23


,C =



C1111 C1122 C1133 C1112 C1113 C1123

C2211 C2222 C2233 C2212 C2213 C2223

C3311 C3322 C3333 C3312 C3313 C3323

C1211 C1222 C1233 C1212 C1213 C1223

C1311 C1322 C1333 C1312 C1313 C1323

C2311 C2322 C2333 C2312 C2313 C2323


. (2.8)

Here, notice also that shear strains are stored as engineering strains γij = 2εij for

i 6= j. The implementation of the numerical model should be done considering these

conventions. Moreover, the total strain tensor in current increment is rotated to ac-

count for rigid body rotation before Abaqus calls UMAT subroutine for finite strain

problems; thus, the user defined tensorial variables, such as plastic strains, have to

be rotated at the start of the subroutine to assure that all of the direction dependent

variables have the same orientation. Abaqus provides the relevant rotation operator

for the UMAT under the name of ROTSIG.

The Cauchy or true stress is used as the stress measure in a UMAT subroutine which

can be written as

σ = κ tr(εe)1 + 2µ dev(εe) (2.9)

where κ is Bulk Modulus, µ is Shear Modulus, dev(εe) is the deviatoric part of the

elastic strain tensor (dev(εe) = εe − 1
3
tr(εe) 1), tr(εe) is the trace of elastic strain

tensor (tr(εe) = εe11 + εe22 + εe33) and 1 is the second order identity tensor.

As stated previously, in a finite element simulation, total strain tensor ε is passed in

the UMAT subrotuine for the calculation of the stresses from the constitutive model

at each integration point. To be able to compute the stresses from Eq. (2.9), elastic

and plastic parts of the total strain tensor have to be determined.

Elastic and plastic parts of the strain tensor can further be divided into deviatoric and

hydrostatic components as

εe = tr(εe)1 + dev(εe),

εp = tr(εp)1 + dev(εp).
(2.10)
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Therefore, the Cauchy stress can be written as follows

σ = κ (tr(ε)− tr(εp))1 + 2µ (dev(ε)− dev(εp)). (2.11)

Plastic part of the strain tensor is governed by the associative plastic flow rule:

ε̇p = γ̇
∂φ

∂σ
= γ̇

(
3

2

dev(σ)

σ̄g1

+
1

9

tr(σ)

σ̄g2

1

)
, (2.12)

where γ is the plastic multiplier that determines the amount of plastic strain, φ is the

yield potential, ∂φ/∂σ determines the direction of the plastic flow, and the σ̄ is the

effective stress as

σ̄ =

√
3

2

dev(σ) : dev(σ)

g1(f)
+

1

9

(tr(σ))2

g2(f)
. (2.13)

Constitutive equations are then integrated using backward Euler scheme, which can

be summarized for two arbitrary variables a and b, as

ȧ = b→ an+1 − an
∆t

= bn+1. (2.14)

Then the numerical integration of the equations are as follows:

εpn+1 = εpn + ∆γ

(
3

2

dev(σn+1)

σ̄n+1 g1,n

+
1

9

tr(σn+1)

σ̄n+1 g2,n

1

)
, (2.15)

ε̄pn+1 = ε̄pn + ∆γ, (2.16)

fn+1 =
fn + tr(εpn+1)− tr(εpn)

1 + tr(εpn+1)− tr(εpn)
=
fn + ∆γ

(
1
3
tr(σn+1)
σ̄n+1 g2,n

)
1 + ∆γ

(
1
3
tr(σn+1)
σ̄n+1 g2,n

) , (2.17)

where n and n + 1 subscripts denote the previous and current increments, respec-

tively, and ε̄p is the accumulated (equivalent) plastic strain. Here, ∆γ (= γ̇∆t) is not

marked as the the current or previous value because it is calculated for each increment

separately and then used to update the state variables. Note that, plastic strain tensor

εp, accumulated plastic strain ε̄p and the porosity f are the state (internal) variables

of the constitutive model. Also, gn functions are computed for the porosity value at

the previous increment because the evolution of porosity is performed at the end of

the subroutine in the current implementation.
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Stress for the current increment can be obtained by combining Eqs. (2.11) and (2.15)

as

σn+1 =κ

(
tr(εn+1)− tr(εpn)− 1

3

tr(σn+1)∆γ

σ̄n+1g2,n

)
1

+ 2µ

(
dev(εn+1)− dev(εpn)−∆γ

3

2

dev(σn+1)

σ̄n+1g1,n

)
. (2.18)

Deviatoric and mean parts of the stress tensor should to be determined separately

from Eq. (2.18) in order to be used in the yield potential. Mean part can be found by

taking the trace of the equation,

tr(σn+1) = 3κ

(
tr(εn+1)− tr(εpn)− 1

3

tr(σn+1)∆γ

σ̄n+1g2,n

)
. (2.19)

Rearranging the terms yields the trace of the stress as

tr(σn+1) =
3κ (tr(εn+1)− tr(εpn))

1 +
κ∆γ

σ̄n+1 g2,n

. (2.20)

The deviatoric part of the stress can be found similarly by taking the deviator of Eq.

(2.18) which gives

dev(σn+1) = 2µ

(
dev(εn+1)− dev(εpn)−∆γ

3

2

dev(σn+1)

σ̄n+1 g1,n

)
. (2.21)

Again, rearranging the terms yields deviatoric stress as

dev(σn+1) =
2µ (dev(εn+1)− dev(εpn))

1 +
3µ∆γ

σ̄n+1 g1,n

. (2.22)

All the necessary derivations are completed for the stress update. The classical radial

return algorithm is used for the numerical solution of constitutive equation. In the next

section, the corresponding steps and derivations for the stress update are explained.

2.2.1 Radial return algorithm

Radial return or return mapping algorithms are among the most popular methods for

the calculation of constitutive equations. The algorithm includes elastic predictor

(trial) and plastic corrector steps. In the prediction step, the idea is to guess a stress

state assuming the incremental strain is totally elastic for the current step. Then,
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the trial stress is checked using the yield surface defined by the yield potential. The

surface is the elastic limit for the model; thus, stress at the end of the calculation has

to be inside or on the yield surface. If the trial stress is inside the surface, then the

prediction is correct, and the stress is equal to the trial stress. Suppose the trial stress

surpasses the yield surface. In that case, the current increment is a plastic one. Stress

for the current increment has to be corrected considering the evolution of the yield

surface based on the strain hardening and other constitutive variables. Correction

usually requires an iterative solution due to the nonlinearity of the yield potential.

This step brings the trial stress back to the yield surface, which is the radial return

part of the algorithm.

For the current porous plasticity model, necessary steps are explained starting from

the prediction step. Elastic predictor stress can be written by taking ∆γ = 0,

σtrialn+1 = κ(tr(εn+1)− tr(εpn))1 + 2µ(dev(εn+1)− dev(εpn)) (2.23)

which means purely elastic behavior is assumed for the current deformation incre-

ment. Using the trial stress, trial yield function can be written as

φtrialn+1 =

√
3

2

dev(σtrialn+1 ) : dev(σtrialn+1 )

g1,n(fn)
+

1

9

(tr(σtrialn+1 ))2

g2,n(fn)
− σy,n. (2.24)

The state of the material is determined by checking whether the yield function is

bigger or smaller than 0. If φtrialn+1 6 0 then the material behaves elastically and

∆γ = 0. If φtrialn+1 > 0, step is then called plastic step, and plastic multiplier, ∆γ,

needs to be computed so that φn+1 = 0 which indicates that stress state is returned

back to the yield surface. Note that, porosity functions g1,n, g2,n and σy are calculated

using the state variables (fn and εpn) at the previous increment; thus, they are not

marked as trial values.

It is important to note that, due to the coaxiality of the trial deviatoric stress, dev(σtrialn+1 ),

and the final deviatoric stress, dev(σn+1), the deviatoric part of the flow direction is

known from the elastic prediction stress, as

dev(nn+1) = dev(ntrialn+1 ) (2.25)

where n = ∂φ/∂σ. The sufficient condition for coaxiality is

dev(σn+1) : dev(σtrialn+1 ) = dev(σtrialn+1 ) : dev(σn+1). (2.26)
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This condition can be satisfied by using the Eqs. (2.22) and (2.23) as(
2µ (dev(εn+1)− dev(εpn))

1 + 3µ∆γ
σ̄n+1 g1,n

)
: (2µ(dev(εn+1)− dev(εpn))) =

(2µ(dev(εn+1)− dev(εpn))) :

(
2µ (dev(εn+1)− dev(εpn))

1 + 3µ∆γ
σ̄n+1 g1,n

)
.

(2.27)

Then coaxiality can be shown as(
4µ

1 + 3µ∆γ
σ̄n+1 g1,n

)
(dev(εn+1) : dev(εn+1)− dev(εpn) : dev(εn+1)

− dev(εn+1) : dev(εpn) + dev(εpn) : dev(εpn)) =(
4µ

1 + 3µ∆γ
σ̄n+1 g1,n

)
(dev(εn+1) : dev(εn+1)− dev(εpn) : dev(εn+1)

− dev(εn+1) : dev(εpn) + dev(εpn) : dev(εpn)).

(2.28)

In addition, for the current implementation, hydrostatic part of the flow direction is

assumed to be known from the trial stress as well (i.e. tr(nn+1) = tr(ntrialn+1 )).

In the algorithm, if the step is found to be elastic ( φtrialn+1 ≤ 0 and ∆γ = 0) then state

variables do not change and stress is equal to the trial stress as follows:

εpn+1 = εpn,

ε̄pn+1 = ε̄pn,

fn+1 = fn,

σn+1 = σtrialn+1 .

(2.29)

Otherwise, the trial stress is beyond the yield surface (φtrialn+1 > 0) and the plastic

correction step has to be performed. This requires the calculation of incremental flow

multiplier, ∆γ. Since the yield function is nonlinear, the Newton-Raphson method is

used for the computation in the subroutine. The derivative ∂φn+1/∂∆γ is required

for the iterative solution. In order to find the derivative, yield function in the current

step is written in an open form using Eqs. (2.1) (2.20) (2.22),

φn+1 =

√√√√√√
3

2

dev(σtrialn+1 ) : dev(σtrialn+1 )

g1,n

(
1 +

3µ∆γ

σ̄n+1 g1,n

)2
+

1

9

(tr(σtrialn+1 ))2

g2,n

(
1 +

κ∆γ

σ̄n+1 g2,n

)2
− σy,n+1. (2.30)
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The terms in the denominator are identified as

G = 1 +
3µ∆γ

σy,n+1 g1,n

, H = 1 +
κ∆γ

σy,n+1 g2,n

(2.31)

for simplicity of the derivation and also σ̄ = σy because φ = σ̄ − σy = 0 in a plastic

increment. Therefore, algorithmic yield function can be written as

φn+1 =

√
3

2

dev(σtrialn+1 ) : dev(σtrialn+1 )

g1,nG2
+

1

9

(tr(σtrialn+1 ))2

g2,nH2
− σy,n+1. (2.32)

Then, the derivative, ∂φn+1/∂∆γ, can be found as follows:

∂φn+1

∂∆γ
=
−1

σ̄

[
9µ

2

σ′,trialn+1 : σ′,trialn+1

σ2
y,n+1 g

2
1,nG

3

(
σy,n+1 −

∂σy,n+1

∂∆γ
∆γ

)
+
κ

9

(tr(σtrialn+1 ))2

σ2
y,n+1 g

2
2,nH

3

(
σy,n+1 −

∂σy,n+1

∂∆γ
∆γ

)]
− ∂σy,n+1

∂∆γ
(2.33)

where

σy,n+1 =

(
1 +

Eε̄pn+1

σ0

)n
,
∂σy
∂∆γ

= nE

(
1 +

Eε̄pn+1

σ0

)n−1

(2.34)

for the exponential hardening relation used in the numerical examples in the current

work and superscript n is the hardening exponent.

Algorithm 1: Newton-Raphson Algorithm for the calculation of ∆γ

1 Initilize ∆γ = 0

2 while Residual < Tolerance do

3 Update ε̄pn+1 (Eq. 2.16)

4 Calculate σy,n+1 and ∂σy,n+1

∂∆γ
(Eq. 2.34)

5 Find the residual from Res = |φn+1| (Eq. 2.32)

6 Calculate ∂φn+1/∂∆γ (Eq. 2.33)

7 Update ∆γ ← (∆γ −Res/∂φn+1

∂∆γ
)

8 end

Algorithm initiates with ∆γ = 0, computes the variables in Eqs. (2.33)-(2.34) and up-

dates ∆γ as shown in the Algorithm 1. Iterations continue until |φn+1| < Tolerance

from Eq. (2.32). Tolerance value used in the calculations is 10−12. After the itera-

tions are complete, ∆γ is found, and state variables can be updated with the following
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relations.

εpn+1 = εpn + ∆γnn+1,

ε̄pn+1 = ε̄pn + ∆γ,

fn+1 =
fn + ∆γ tr(nn+1)

1 + ∆γ tr(nn+1)

(2.35)

where the plastic flow direction is

nn+1 =

(
3

2

dev(σtrialn+1 )

σ̄trialn+1 g1n

+
1

9

tr(σtrialn+1 )

σ̄trialn+1 g2n

1

)
. (2.36)

Finally, stress tensor can be found from

σn+1 = κ (tr(εn+1)− tr(εpn+1))1 + 2µ(dev(εn+1)− dev(εpn+1)). (2.37)

Notice that the evolution of the porosity is not updated during the current increment

which means that the yield surface in the current increment is found by using the

porosity at the previous increment. Although the present implementation method

is not the most rigorous method mathematically, using a sufficiently small step size

solves this problem and yields a convergent solution for the numerical examples pre-

sented in the thesis.

Now, the update of the stress and the state variables are performed in the local material

subroutine. However, the solution of nonlinear problems in mechanics with the finite

element method requires an incremental-iterative solution scheme. The nonlinear

problem is solved in small linear increments iteratively in the global finite element al-

gorithm. Thus, the stiffness or the material tangent from the local model is necessary.

Usually, the continuum or the consistent tangent modulus can be used as the material

stiffness. The continuum modulus can be found directly by taking the derivative of

the rate constitutive equations while the consistent tangent is found from the differ-

entiation of algorithmic constitutive equations. For the current model, the consistent

tangent modulus is used but differentiation is performed numerically as explained in

the following section due to the complicated formulation.

2.2.2 Calculation of the numerical tangent modulus

Using a consistent tangent modulus provides an optimal convergence rate for the

global finite element solver based on the Newton’s method (see [75]). It is computed
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here numerically using the perturbation technique due to its complicated derivation

in the current model. With this method, 6 additional stress calculations have to be

made. Thus, it is computationally more costly but brings simplification to the imple-

mentation of the model. Consistent tangent modulus, which is a 4th order tensor, is

normally calculated from

Cn+1 =
∂σn+1

∂εn+1

. (2.38)

Instead of taking the derivative directly, it is approximated using

Cij, n+1 ≈
∆σi, n+1

∆εj, n+1

, (2.39)

in Voigt notation where ∆ indicates the change between the values at the end of the

increment (σn+1, εn+1) and at the perturbed state (σpern+1, εpern+1). In the subroutine,

strains εn+1 are perturbed with a very small value (10−10), and stresses are recal-

culated at the perturbed state. Calculations are conducted following the same for-

mulation and implementation explained previously; thus, no additional derivation is

required to use the method. Then, the consistent tangent modulus can be found as

Cij, n+1 =
σperi, n+1 − σi, n+1

εperj, n+1 − εj, n+1

. (2.40)

It is essential to note here that perturbations have to be given in each strain component

of εn+1 separately because perturbing more than one component of strain would yield

a stress state that includes the effect from both of the perturbed strains and calculation

results in an incorrect tangent modulus. Therefore, for the 6 components of the mod-

ulus tensor in Voigt notation, only one perturbation state can be used, which implies

that for a 6x6 modulus matrix, 6 additional perturbed stress states are required.

After presenting the implementation of the model as a material subroutine using the

classical prediction-correction scheme with a numerical approximation of the con-

sistent tangent modulus, the representative volume element (RVE) study under stress

triaxiality is explained in the next chapter.
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CHAPTER 3

RVE CALCULATIONS UNDER CONSTANT STRESS TRIAXIALITY

In this chapter, the modeling of the representative volume element (RVE) including

a spherical void is discussed, and the application of constant triaxiality stress state is

explained in detail. Finite element analyses of RVEs have been quite useful for the

investigation of pore evolution in terms of both volume and shape of the voids as well

as for addressing the stress carrying capacity of the ductile material. Here, the RVE

is taken from a periodic array of cubic elements with spherical voids in the center,

it is deformed under a constant triaxial stress state with proper boundary conditions.

There are several different methods in the literature for porous RVE simulations under

constant stress triaxiality. Some of the methods with 2D axisymmetric finite elements

are discussed in [76] including the application of cyclic loads. In the current study,

the method proposed in [77] is employed, which is a displacement controlled method

performed on 3D models. The study in the thesis only covers the effect of stress

triaxiality, T , on void evolution. However, the effect of Lode parameter can be studied

in combination with T using the current methodology.

In Figure 3.1, voided RVE model is shown. Figure 3.1a demonstrates the unit cell

with a spherical void in the center. By using the geometrical symmetry and boundary

conditions, the one-eighth portion of the unit cell is modeled, as shown in Figures

3.1b and 3.1c. RVE model is meshed with 8 noded 3D hexahedral elements (C3D8) of

ABAQUS. The number of elements for the model with an initial void volume fraction

of f0 = 1% is 4125, and for f0 = 0.1% is 4831. The mesh density is increased at

the near vicinity of the void with a node spacing of 0.01 and 0.02 mm at the edges of

the void for f0 = 0.001 and f0 = 0.01, respectively, for an RVE with a 1 mm edge

length. The initial edge length of the unit cell (see Figure 3.1a) is 2L0; hence, the
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Figure 3.1: (a) Complete RVE model for f0 = 0.01 and finite element models of

one-eighth of the RVE (b) f0 = 0.01, (c) f0 = 0.001.

edge length of the finite element models is L0. The initial void volume fraction can

be found by f0 = πr3
0/(6L

3
0), where r0 is the radius of the initial void. Moreover,

the behavior of the matrix material is described by the classical von Mises plasticity

theory with the material parameters presented in Table 4.1 and hardening relation in

Eq. (4.1) in Chapter 4.

The stress state of the RVE can be characterized by stress triaxiality, T , and Lode

parameter, L, defined as,

T =
Σh

Σeq

, L =
2ΣII − ΣI − ΣIII

ΣI − ΣIII

(3.1)

where the hydrostatic and equivalent stresses are

Σh =
Σii

3
=

Σ11 + Σ22 + Σ33

3
, (3.2)
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Σeq =
1√
2

√
(Σ11 − Σ22)2 + (Σ11 − Σ33)2 + (Σ22 − Σ33)2. (3.3)

Here Σ represents the so-called mesoscopic stress which describe the average stress

response of the unit cell. ΣI , ΣII , ΣIII are the principal stresses defined as

ΣI =
Σ11 + Σ22

2
+

√(
Σ11 − Σ22

2

)2

,

ΣIII =
Σ11 + Σ22

2
−

√(
Σ11 − Σ22

2

)2

,

ΣII = Σ33.

(3.4)

with ΣI ≥ ΣII ≥ ΣIII . Stress state can also be expressed in terms of non dimensional

stress ratios as follows,

T =

√
2(1 + ρ11 + ρ33)sign(Σ22)

3
√

(1− ρ11)2 + (1− ρ33)2 + (ρ33 − ρ11)2
, (3.5)

L = −(1 + ρ11 − 2ρ33)sign(Σ22)√
(1− ρ11)2

(3.6)

where stress ratios are ρ11 = Σ11/Σ22, ρ33 = Σ33/Σ22. Since the applied mesoscopic

stresses are only in the normal direction with respect to the unit cube surfaces for the

current study, shear terms are zero and omitted in T and L expressions in Eqs. (3.3)-

(3.6). Note that Lode parameter is taken as -1 for all RVE simulations in this study

which implies ρ11 = ρ33.

RVE is loaded utilizing three 1D axial elements (CONN3D2) of ABAQUS. These

elements act as linear springs and they are inserted between the dummy nodes M1 −
N1, M1 − N2 and M1 − N3 as shown in the Figure 3.2. Dummy nodes are used to

control forces in the springs utilizing a multi-point constraint user subroutine (MPC

subroutine of Abaqus [74]). Nodes are created outside of the RVE, ensuring that

the spring elements are parallel with the coordinate axes, and they are not a part of

the finite element mesh. Forces in the springs are transferred to the cell surfaces

with a displacement coupling between surface nodes and node M1. This constraint

is enforced with the "equation constraint" of ABAQUS. Node sets are created from

the nodes at the outer surfaces which are named as xsurf , ysurf and zsurf (see Figure

3.3). Displacements of these nodes are coupled to the corresponding displacements
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Figure 3.2: Positions of the dummy nodes and corresponding spring forces.

of node M1 as

u1
M1

= u1
xsurf

, u2
M1

= u2
ysurf

, u3
M1

= u3
zsurf

. (3.7)

Figure 3.3: Surfaces used for boundary conditions.

With the displacement coupling, the outer surfaces stay straight and aligned with the

coordinate axes during the deformation. For the inner boundaries of the cell near

the void (xisurf , yisurf , zisurf , see Figure 3.3), symmetry boundary conditions are
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applied, as

u1
xisurf

= 0, u2
yisurf

= 0, u3
zisurf

= 0, (3.8)

where the superscripts 1, 2 and 3 corresponds to the x, y and z directions, respectively.

The mesoscopic stresses acting on the RVE can be represented using the spring forces

as

Σ11 =
F1

A1

, Σ22 =
F2

A2

, Σ33 =
F3

A3

(3.9)

where A1, A2 and A3 are the surface areas of xsurf , ysurf and zsurf , respectively. F1,

F2 and F3 are the forces created by the springs in the x, y and z directions. Forces

and the areas are

F1 = k(u1
N1
− u1

M1
), A1 = (L0 + u2

M1
)(L0 + u3

M1
),

F2 = k(u2
N2
− u2

M1
), A2 = (L0 + u1

M1
)(L0 + u3

M1
),

F3 = k(u3
N3
− u3

M1
), A3 = (L0 + u1

M1
)(L0 + u2

M1
),

(3.10)

where k is the spring constant (i.e. elastic modulus of the axial element). Constant

stress ratios can be written using the Eqs. (3.9) and (3.10), as

ρ11 =
Σ11

Σ22

=
F1

A1

A2

F2

=
A2(u1

N1
− u1

M1
)

A1(u2
N2
− u2

M1
)
,

ρ33 =
Σ33

Σ22

=
F3

A3

A2

F2

=
A2(u3

N3
− u3

M1
)

A3(u2
N2
− u2

M1
)

(3.11)

Note that spring constant k is not in the equation; however, it affects the convergence

rate of the solution. k is taken as E/10, as suggested by Tekoğlu [77], where E is the

elastic modulus of the matrix material. Finally, the multi-point constraint equations

are

ρ11(u2
N2
− u2

M1
)−

L0 + u1
M1

L0 + u2
M1

(u1
N1
− u1

M1
) = 0,

ρ33(u2
N2
− u2

M1
)−

L0 + u3
M1

L0 + u2
M1

(u3
N3
− u3

M1
) = 0

(3.12)

from Eqs. (3.11) and (3.10). The two equations given in (3.12) are needed to be sat-

isfied with the Abaqus MPC subroutine. There are 5 unknowns u1
M1

, u2
M1

, u3
M1

, u1
N1

and u3
N3

in Eq. (3.12) and u2
N2

is the prescribed displacement value. Notice that only

3 nodes and 4 displacement values are required to solve each equation (M1, N1 and

27



N2 for the first equation, M1, N3 and N2 for the second equation). For the present ap-

plication, N2 & M1 are the independent nodes and N1 & N3 are the dependent nodes

because their displacement values are calculated and enforced in the MPC subroutine.

The current method is a displacement controlled approach that uses spring elements

and multi point constraints. Alternatively, the Riks method, with traction boundary

conditions, can also be employed to apply constant stress triaxiality on an RVE model

(see e.g. [78, 79]).

Results from the RVE analysis are obtained by volume averaging stress components

at each integration point in the finite element model by using the relation between the

mesoscopic stress, Σij , and the microscopic local stress, σij , as

Σij =
1

V

∫
V

σijdV (3.13)

where V is the volume of the RVE. Therefore, for a finite element model, mesoscopic

stress can be found by volume averaging the local stress components in the RVE, as

Σij =
N∑
e=1

( p∑
q=1

σq,eij v
q,e

)
/V (3.14)

where σij is the local stress, N is the total number of elements, p is the number of

integration points in an element (8 for an C3D8 element) and v is the local volume

at an integration point. The total RVE volume, V , can be computed by summation of

local v values. The mesoscopic strains can be found by

E11 = ln

(
l1
L

)
, E22 = ln

(
l2
L

)
, E33 = ln

(
l3
L

)
(3.15)

where l and L are the final and initial edge lengths of the RVE model, respectively.

Averaging is done through a Python script written based on the script given in [80].

Porosity value is obtained from the same script using the following equation:

f = (L0 + u1
M1

)(L0 + u2
M1

)(L0 + u3
M1

)− V. (3.16)

Parameter sets for the RVE study are listed below.

• f0 = 0.01, 0.001 : typical initial porosity levels for metal alloys.

• T = 0.35, 0.66, 0.75, 1, 2, 3 : stress triaxiality range covers most of the stress

states that ductile metals encounter during deformation.
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• n = 0.1, 0.2 : two different hardening exponents are tested to address the per-

formance of the porous plasticity model under different hardening conditions.

Simulations are performed with Abaqus/Standard implicit finite element solver with

constants step size, ∆t = 0.001, and total time, ttotal = 1.

In the next chapter, numerical results of the RVE analysis and the porous plasticity

model are presented. An extension of the current model is proposed based on the

RVE results and comparisons are made with the extended model and the well-known

GTN model. In addition, the performance of the extended model is addressed through

uniaxial tension simulations of blunt notched and smooth specimens.
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CHAPTER 4

RESULTS AND DISCUSSION

In this chapter, the numerical analysis conducted on the presented RVEs are addressed

together with the results from the presented porous plasticity and the GTN models.

An extension of the current model is proposed for capturing better fit with the RVE

calculations. Moreover, further simulations are done on blunt notched and smooth

specimens using the porous plasticity, GTN and uncoupled Johnson-Cook models for

capturing ductile failure. The fracture locus employed in the Johson-Cook model is

obtained from the RVE analysis. The fracture strain values are taken at the onset of

void coalescence in the RVE results, and the variables in the Johnson-Cook model

are obtained through curve fitting. Note that the model implemented in the thesis is

referred to as the porous plasticity model or the porous model in this chapter.

4.1 Material parameters

In all finite element calculations, the following exponential relation is employed to

describe the isotropic hardening behavior of the material in both the porous plasticity

model and the matrix material of the RVE.

σy
σ0

=

(
1 +

Eε̄p

σ0

)n
(4.1)

where σ0 is the initial yield stress, n is the hardening exponent, ε̄p is accumulated

plastic strain (ε̄p =
∫ t

0
||ε̇p(τ)||dτ ) which is one of the state variables of the consti-

tutive model and E is Young’s modulus. Material parameters are presented in Table

4.1. Two different hardening exponents (n = 0.1, 0.2) are used to investigate the per-

formance of the model at different hardening conditions. Also, the material is linear

elastic up to the initial yield stress, σ0.
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Table 4.1: Material parameters

E/σ0 n E ν

300 0.1, 0.2 70000 [MPa] 0.3

The conversion from the Young’s modulus, E, and Poisson’s ratio, ν, to the bulk

modulus, κ, and shear modulus, µ, which are used in the porous plasticity model, can

be done using the following relations

κ =
E

3(1− 2ν)
, µ =

E

2(1 + ν)
. (4.2)

Note that in the RVE analysis the classical J2 plasticity model with the isotropic

hardening relation in 4.1 is employed. From this study both the evolution of pore

volume fraction and the mesoscopic response of the material are obtained. Then, the

analysis of the porous plasticity and the GTN models are conducted under the same

conditions.

4.2 Single element response of the porous plasticity model

The porous plasticity model and the numerical implementation are tested and com-

pared with the built-in J2 plasticity model of Abaqus. A single 3D finite element

(C3D8) is considered under uniaxial tension/compression and pure shear conditions,

as illustrated in Figure 4.1. Model is a unit cube with 1 × 1 × 1 mm dimensions.

Uniaxial loading is tested with both displacement and traction boundary conditions.

For the hardening exponent, n = 0.1 is used. Hardening is provided to Abaqus in

a user hardening subroutine (UHARD). Calculations are done with a constant step

size of 0.001 using the standard implicit solver. Moreover, calculation times are also

compared between the present implementation and the plasticity model of Abaqus.

Left, back and bottom faces of the element are fixed in their respective normal di-

rections as shown in Figure 4.1, and displacement/traction is applied to the right face

with the normal x to simulate a uniaxial deformation behavior. For the displacement

boundary condition, 0.4, −0.2 and 0.1 mm are used as displacement values in the
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𝑏𝑎𝑐𝑘 𝑓𝑎𝑐𝑒, 𝑢𝑧 = 0

𝑙𝑒𝑓𝑡 𝑓𝑎𝑐𝑒, 𝑢𝑥 = 0
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𝑏𝑎𝑐𝑘 𝑓𝑎𝑐𝑒, 𝑢𝑧 = 0

Figure 4.1: Single element under uniaxial (left) and pure shear (right) loads.

x-direction, which applies an arbitrary tension-compression to the element. The trac-

tion boundary condition is handled similarly. The applied tractions in the x-direction

are 300, −350 and 400 MPa. Stress and strain data are extracted from the integra-

tion points. The results for the uniaxial test are shown in Figure 4.2. In Figures 4.2a

and 4.2b, the stress versus strain responses obtained from displacement and traction

boundary conditions are shown, respectively. It can be seen that the UMAT imple-

mentation of the model yields exactly the same results as the built-in plasticity model

of Abaqus at 0 initial porosity. Results for f0 = 0.05 is also plotted to show the

effect of having a high porosity value. The yield stress decreases, and the model

generally shows a similar trend but at a damaged state. Note that the evolution of

the porosity is very small and can be neglected in uniaxial loading conditions; thus,

the porosity induced damage only comes from the initial porosity. Under the traction

boundary condition, the present implementation at f0 = 0 again yields the same re-

sult. f0 = 0.05 is not included for the traction boundary condition results because, at

a damaged state, the material cannot carry the same load as in undamaged conditions,

and convergence cannot be achieved.

Pure shear is applied to the element through prescribed displacement boundary con-

ditions. Each face of the element is displaced 0.2 mm in the directions, as shown in

Figure 4.1 while the back face with the normal z is fixed in the z-direction. Resultant

shear stress-strain response is shown in Figure 4.3. It can be concluded that the porous

plasticity model can predict the same results as the built-in Abaqus plasticity model at

f0 = 0. Furthermore, the decrease in the yield stress and overall shear stress capacity

of the element is reduced at f0 = 0.05. Under the effect of pure shear, porosity does

not change for the current model.
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Figure 4.2: Uniaxial stress-strain relation of the porous plasticity model and Abaqus

J2 plasticity model. (a) Under prescribed displacement, (b) under prescribed surface

traction

The current implementation of the porous plasticity model at f0 = 0 and the built-

in J2 plasticity model of Abaqus are compared in terms of total CPU times in Table

4.2. Although at zero porosity, both models solve the exact same constitutive equa-
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Figure 4.3: Stress-strain relation of the porous plasticity model and Abaqus J2 plas-

ticity model under pure shear.

tions, present implementation consistently takes a longer time to solve compared to

the Abaqus constitutive model. The main reason behind this difference is that the

porous implementation calculates the tangent modulus numerically in the subroutine

by making 6 additional stress calculations, while for the classical implementation of

the J2 plasticity, the tangent modulus can be found in an open form.

Table 4.2: Simulation times of the porous plasticity model and the Abaqus J2 plastic-

ity model.

CPU times (sec) Uniaxial (disp) Uniaxial (trac) Pure shear

Porous model 19.5 21.5 7.1

Abaqus J2 model 16.5 19.0 6.5

Additional finite element calculations are performed with finite rotations without ap-

plying any strain to the element in order to ensure that the model does not yield any

stress for rotation only. Moreover, the same uniaxial tension and pure shear loads are

applied in different directions, and the stress-strain responses are found to be identical

to the ones presented previously. The results indicate that the present implementation

of the porous plasticity model works as intended, and the numerical calculation of the
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tangent modulus is done correctly. After validating the implementation and UMAT

subroutine, the RVE analysis results are presented in the following section.

4.3 Results from the RVE analysis

Firstly, the RVE calculation methodology is validated through error calculations per-

formed using the prescribed stress ratios, ρ11 & ρ33, and the stress ratios obtained from

the finite element calculations ρFE11 & ρFE33 . ρFE11 and ρFE33 corresponds to Σ11/Σ22 and

Σ33/Σ22, respectively. Figure 4.4 illustrates the variation of percent error with respect

to equivalent strain for f0 = 0.01, n = 0.1 and L = −1. The error is found to be less

then 0.5× 10−3 % for all equivalent strain values and the maximum error is obtained

for T = 3.

Result from the finite element analysis of the RVE using hardening exponent n =

0.1 and Lode parameter L = −1 are plotted in Figures 4.5 and 4.6 at two different

initial porosity levels. Figures 4.5a and 4.6a show the equivalent stress-strain curves

normalized with σ0. The dominant effect of stress triaxiality on the ductility is evident

for both f0 = 0.01 and f0 = 0.001. After a certain equivalent strain, the deformation

mode changes and the radial growth of the RVE becomes negligible compared to the

axial growth (i.e., E11 = E33 = 0 and E22 6= 0). This point is also referred to

as the onset of void coalescence, where internal necking starts in the ligaments that

connect adjacent voids radially. The onset of uniaxial straining mode is marked by ◦
in the figures. Numerically, it is found when ∆E11/∆E22 or ∆E33/∆E22 is less than

a tolerance value (=10−1). After the uniaxial straining point, a sudden drop in the

equivalent stress is observed. It can be seen that void coalescence starts at a relatively

smaller equivalent strain for higher initial porosity.

Figures 4.5b and 4.6b illustrate the change in void volume fraction with equivalent

strain. It is shown that below T = 1, void coalescence is not observed at f = 0.001;

however, at f = 0.01, coalescence can occur even at T = 0.75 in the given equivalent

strain range. The starting point of void coalescence is at an earlier equivalent strain

value for f0 = 0.01 compared to f0 = 0.001, and also, the porosity value is signif-

icantly higher for all stress triaxiality values. Moreover, shift to void coalescence is
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Figure 4.4: The percent error in stress ratios (a) ρ11 and (b) ρ33 vs equivalent strain

for f0 = 0.01, n = 0.1 and L = −1.

much sharper at T = 0.75 and T = 1 compared to T = 2 and T = 3. Note that, at

a relatively small initial porosity, there is minimal void growth at triaxialities below

1, which also translates to almost no difference in ductility or stress carrying capacity

(see Figure 4.6a). As the initial porosity increases, void growth became a prominent
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Figure 4.5: Results from the RVE simulations for f0 = 0.01, n = 0.1 andL = −1. (a)

Normalized equivalent stress strain relation, (b) void volume fraction, f , vs equivalent

strain. The onset of uniaxial straining mode is marked by ◦.

event at low T values. Although increase of void volume fraction at T = 0.66 and

below does not significantly affect equivalent stress, the importance of the growth

would arise in a deformation process with evolving stress triaxiality.
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Figure 4.6: Results from the RVE simulations for f0 = 0.001, n = 0.1 and L =

−1. (a) Normalized equivalent stress strain relation, (b) void volume fraction, f , vs

equivalent strain. The onset of uniaxial straining mode is marked by ◦.

The results for n = 0.2 are shown in Figures 4.7 and 4.8. Figures 4.7a and 4.8a

demonstrate the equivalent stress-strain response and the porosity evolution is shown

in Figures 4.7b and 4.8b. Similar conclusions can be made at this hardening exponent
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Figure 4.7: Results from the RVE simulations for f0 = 0.01, n = 0.2 andL = −1. (a)

Normalized equivalent stress strain relation, (b) void volume fraction, f , vs equivalent

strain. The onset of uniaxial straining mode is marked by ◦.

compared to the n = 0.1. Additionally, as the hardening exponent is increased, void

growth is slower and void coalescence starts at a higher equivalent strain value at the

same initial porosity.
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Figure 4.8: Results from the RVE simulations for f0 = 0.001, n = 0.2 and L =

−1. (a) Normalized equivalent stress strain relation, (b) void volume fraction, f , vs

equivalent strain. The onset of uniaxial straining mode is marked by ◦.

The deformed shapes of the RVE’s are shown in Figure 4.9 for T = 0.35, 1, 3. Fig-

ures are generated by mirroring the RVE, which is one-eighth of the complete voided

unit cube. For T = 1 and 3, figures are taken at the point when the coalescence starts.
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For T = 0.35, it is taken at an arbitrary point since there are small differences in plas-

tic strain distribution throughout the deformation, and coalescence is not observed.

In terms of shape change for T = 0.35, 1, it can be seen that void elongates in the

vertical direction as the strain increases and takes a prolate shape, but for T = 3,

void evolves into an oblate shape. Note that RVE’s with voids under constant stress

triaxiality has been studied thoroughly (see e.g. [38,63,77,81]) and presented results

are in well agreement with the literature.
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Figure 4.9: Equivalent plastic strain distribution and deformed shapes of the RVE’s

for f0 = 0.01 at the onset of void coalescence for (b)(c) and at an arbitrary point for

(a).
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4.4 Comparison of the porous plasticity model and the RVE calculations

In this section, the results from the RVE calculations are compared with the ones from

the current porous plasticity model. Results are obtained from a single 3D hexahedral

element (C3D8) under constant stress triaxiality utilizing the same method as the RVE

simulations. The voided model shown in the RVE analysis is changed to a single 3D

element (C3D8), and the presented porous plasticity model is used as the material

model for the analysis. All of the boundary conditions are the same as described in

the RVE analysis in Chapter 3. Therefore, both the RVE study and the present model

were solved under the same conditions. Note that smaller step sizes are used for the

porous plasticity model compared to the RVE analysis in order to obtain convergent

solutions. Step size is 10−4 for T = 1 and below, 10−5 for T = 2 and 3 with a total

simulation time of ttotal = 1. Moreover, the initial results from the porous model do

not include any coalescence criteria. Its incorporation will be discussed in a separate

section.

Figures 4.10a and 4.11a show the equivalent stress-strain relations obtained from both

the RVE computations and the porous plasticity model for f0 = 0.01 and f0 = 0.001

for the whole T range. The model can only capture the general trend of the decrease in

ductility and equivalent stress with increasing stress triaxiality. It can also be said that

the porous model has better prediction in terms of equivalent stress-strain response

at higher initial porosity. At T = 1, predictions of the model is closest to the RVE

results compared to the other T values. As the stress triaxiality increases, the model

overpredicts the reduction in the equivalent stress response compared to the RVE, and

the opposite happens at T < 1. Similar conclusions can be made with the porosity

evolution in Figures 4.10b and 4.11b. The model again underpredicts void growth at

T > 1 and overpredicts at T < 1. Note that the model only predicts the damage due

to void growth; thus, the results should be compared up the onset of void coalescence,

especially at T ≈ 1, where the shift to the uniaxial straining mode is sudden.

The studies in [57], [82] and the original study of Cocks [1] show that this formulation

can approximate the yield surface of a porous body at high porosity levels such as

f = 0.05− 0.15, and it is discussed in [57] that the Cocks yield potential is accurate

at f = 0.01 for T < 2. Although these studies are based on the yield surface only and
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Figure 4.10: Comparison of RVE simulations (solid lines) and the porous plasticity

model (dashed lines) for f0 = 0.01. (a) Normalized equivalent stress-strain relation,

(b) void volume fraction, f , vs equivalent strain. The onset of uniaxial straining mode

is marked by ◦.
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Figure 4.11: Comparison of RVE simulations (solid lines) and the porous plasticity

model (dashed lines) for f0 = 0.001. (a) Normalized equivalent stress-strain relation,

(b) void volume fraction, f , vs equivalent strain. The onset of uniaxial straining mode

is marked by ◦.
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do not include the whole constitutive model and a material subroutine as done here,

they also indicate the model’s predictions are accurate at a limited T and f values.

If the previous works are considered, it can be said that the model has the potential

to perform better at f > 0.05, but such high f0 values are not typically observed in

ductile metals; thus, they are not in the scope of this study.
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Figure 4.12: Yield surface comparison between the Cocks model and the Gurson

model with parameters suggested in [38] (q1 = 1.25, q2 = 1, q3 = q2
1).

The reason behind the difference between the porous plasticity model and RVE sim-

ulations is twofold: (i) It is assumed that the initial spherical shape of the voids does

not change during the deformation in the limit analysis of Cocks [1]. However, it

is known that the voids evolve into an oblate shape at T > 2 and prolate shape at

1/3 < T < 1 (examples are shown in Figure 4.9, also see [38,83]). The effect of void

shape on the stress-strain response and void evolution has also been covered in the

literature (see [44, 63]), which is not incorporated in the model of Cocks [1]. Similar

to the GTN model, the current model cannot predict the shape change of voids under

low stress triaxiality and predict higher growth. (ii) In [1], Cocks intended to build a

model that is simple and compact. The resultant yield potential in Eq. (2.1) describes

an ellipse in σm - σeq space at every porosity level. However, it has been shown

in [34] that the elliptic shape is only suitable for a limited porosity range (f > 0.05).

The differences in the yield surface of Cocks and Gurson is visualized in Figure 4.12.
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Surfaces match closely at f = 0.1, but as the porosity decreases, the current model

predicts a higher yield point compared to the Gurson model, especially at greater σm

regions. Knowing that the Gurson model can closely match the RVE simulation re-

sults at high stress triaxiality (see [38]), it is no surprise that the current model cannot

predict the void growth and damage at such T values. Moreover, since both Gurson

and Cocks models yield similar values at lower T regions, they both suffer from the

assumption of spherical void growth.
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4.5 Extension of the porous plasticity model

In order to obtain a better correspondence between the porous plasticity model and

RVE simulations and also to have a model that can be fitted to different material

responses, an extension with two constant fitting parameters is proposed. A constant

fitting parameter, a1, is added to the yield function, as

φ =

√
σ2
eq

g1(feff )
+

σ2
m

a1 g2(feff )
− σy (4.3)

with the same g functions as [1]. Additionally, an effective porosity evolution, ḟeff ,

is proposed which consists stress triaxiality, T , and another parameter, a2, as

ḟeff = ḟ T a2 = ε̇pv(1− f)T a2 . (4.4)

T in Eq. (4.4) acts as a triaxiality scaling factor. For T > 1, the void growth is am-

plified with the increasing T , and below T = 1, the triaxiality’s effect on growth is

reduced. a2 is used for adjusting the level of effect of T on the void growth. Note that

it is not possible to obtain better predictions only by adjusting the porosity functions

due to the shape of the yield function. Therefore, a change in porosity evolution is

suggested in addition to the fitting parameter in the yield function. This approach

solves the problems with void shape change in lower T regions by lowering the ef-

fective growth of the voids while also addressing the problems at the high T regime

originated from the simple description of the yield potential. However, the effective

porosity of the extended model should be treated as a damage variable rather than

the physical volume of the voids with the current addition. Fitting parameters are

selected by trial and error based on the fit of the pore evolution of the model and RVE

results, as a1 = 1.05, a2 = 0.9 for n = 0.1 and a1 = 1.2, a2 = 0.9 for n = 0.2.

Also, since T may not be constant during any deformation process, it is calculated

in the material subroutine (UMAT) and used in the pore evolution rule at each solu-

tion increment. Note that the extension of the model is based on RVE simulations at

T > 0.33. For lower triaxialities than 0.33, additional studies are required. For the

current implementation, the original porosity evolution equation without T and a2 is

used at T < 0.33.

In Figures 4.13, 4.14 and 4.15, extended porous plasticity model predictions are plot-

ted against RVE simulations results for the whole T range at two different initial
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porosity levels and hardening exponents. Normalized equivalent stress versus equiv-

alent strain results are shown in Figures 4.13a, 4.14a and 4.15a. There is a substantial

improvement in the fit with RVE simulation data and the porous plasticity model for

the whole stress triaxiality range. Predictions of the model are slightly better for

small initial pore fraction f0 = 0.001 at both hardening exponents. Also, the model

is able to capture the void growth and sudden decrease in the stress after the void

coalescence at T ≈ 3, but as the T drops, the shift to the coalescence mode is sud-

den and cannot be predicted with the void growth model only. Similar improvements

can also be observed for the pore evolution in Figures 4.13b, 4.14b and 4.15b. Here,

the extended model is fitted to the two different hardening exponents using only the

parameter a1 (see Figures 4.14b and 4.15b). It should be noted that the modification

for the model is solely mathematical and does not depend on any mechanical study.

However, it provides significantly better results while keeping the simple description

of the model and has a highly flexible framework for calibration to different ductile

porous materials. Moreover, using different fitting parameters at different f0 can fur-

ther improve the model’s performance. In the following section, the extended model

is compared with the GTN model.
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Figure 4.13: Comparison of RVE simulations (solid lines) and the porous plasticity

model (dashed lines) for initial porosities for f0 = 0.01 and n = 0.1. (a) Normalized

equivalent stress-strain relation, (b) void volume fraction, f , vs equivalent strain. Fit-

ting parameters: a1 = 1.05 a2 = 0.9. The onset of uniaxial straining mode is marked

by ◦.
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Figure 4.14: Comparison of RVE simulations (solid lines) and the porous plasticity

model (dashed lines) for initial porosities for f0 = 0.001 and n = 0.1. (a) Normalized

equivalent stress-strain relation, (b) void volume fraction, f , vs equivalent strain. Fit-

ting parameters: a1 = 1.05 a2 = 0.9. The onset of uniaxial straining mode is marked

by ◦.
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Figure 4.15: Comparison of RVE simulations (solid lines) and the porous plasticity

model (dashed lines) for initial porosities for f0 = 0.001 and n = 0.2. (a) Normalized

equivalent stress-strain relation, (b) void volume fraction, f , vs equivalent strain. Fit-

ting parameters: a1 = 1.2 a2 = 0.9. The onset of uniaxial straining mode is marked

by ◦.
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4.6 Comparison of the GTN model and the extended porous plasticity model

In this section, the GTN model and the extended porous plasticity model will be

compared with respect to RVE calculations. The yield function of the GTN model is

φ =
σeq
σy

+ 2q1fcosh(
3q2σm
2σy

)− (1 + q3f
2) (4.5)

where σeq is the von Mises equivalent stress, σm is the mean stress, σy is the yield

stress, q1 and q2 are the fitting parameters introduced in [36] with q3 = q2
1 . Void

growth is governed by

ḟ = (1− f)tr(ε̇p). (4.6)

Simulations are performed with the GTN model, which is implemented in commercial

software Abaqus as a porous metal plasticity model (refer to [74, 84] for the details

of the GTN model and the numerical implementation). Fitting parameters suggested

in [38] are used (q1 = 1.25, q2 = 1 and q3 = q2
1), which are obtained based on the fit

of the GTN model and the RVE study conducted with axisymmetric elements. The

RVE study in [38] is conducted with similar initial porosity values (f0 = 0.0013 and

f0 = 0.0104) and using the same hardening conditions.

Results with the GTN model are obtained using the same method as the porous plas-

ticity model. A single hexahedral element is solved under constant triaxial stress

employing the same procedure as the RVE simulations. The voided finite element

model in the RVE study is changed to a single hexahedral element, and the boundary

conditions are applied in the same way.

In Figures 4.16 and 4.17, predictions of the extended model and the GTN model

are plotted with RVE simulation results for the whole T range at f0 = 0.01 and

f0 = 0.001. Figures 4.16a and 4.17a illustrate the equivalent stress-strain responses of

the models. Both models yield comparable results compared to the RVE simulations

until the onset of coalescence. The GTN model is slightly more accurate at T >

1, while the present porous plasticity model can give better predictions at T < 1.

Models show a gradual decrease in the equivalent stress at moderate triaxiality values,

T ≈ 1. However, RVE analysis indicates that the damage due to void growth has

a smaller effect of stress-strain response up to the onset of coalescence. Since the

phenomenological models are derived based on a spherical pore shape, both models
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gradually decrease the stress with the increasing porosity. In the RVE analysis, the

void shape changes significantly at such T values that decrease the effect of void

growth on stress carrying capacity.

The evolution of void volume fraction f with respect to the equivalent strain is plot-

ted in Figures 4.16b and 4.17b. It can be seen that, at f0 = 0.001, both models

can closely predict the behavior of the RVE at all T values up to void coalescence.

However, at f0 = 0.01 and T < 1, predictions of the extended porous model are

clearly more accurate compared to the GTN model. Moreover, the GTN model has

better accuracy for the void evolution at T > 1 and f0 = 0.01, while the extended

model is overpredicting slightly. It can be said that the parameters identified by Kop-

lik and Needleman [38] for the GTN model works well compared to the current RVE

analysis, specifically at T > 1. Moreover, for q1 and q2, additional parameters are

examined (q1 = 1.2− 1.3 and q2 = 0.95− 1.05) by trial and error to find a more suit-

able parameter set. Improvements can be obtained in equivalent stress-strain response

with q2 = 1.2 and q2 = 1. In terms of porosity evolution, closest results are obtained

with the q1 = 1.25 and q2 = 1. The overall predictions of the GTN model are found

to be highly successful at T > 1. As T decreased, the GTN model overpredicts the

void growth in the given parameter range. In the current work, the common form of

the GTN model is used but note that there are extensions of the GTN model, such as

the GLD model, that improve the response of the model at low T values.
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Figure 4.16: Comparison of the extended porous plasticity model (dashed lines) and

the GTN model (dotted lines) together with RVE simulations (solid lines) for initial

porosities for f0 = 0.01. (a) Normalized equivalent stress-strain relation, (b) void

volume fraction, f , vs equivalent strain. Fitting parameters: a1 = 1.05 a2 = 0.9 for

the extended porous plasticity model and q1 = 1.25 q2 = 1 for the GTN model. The

onset of uniaxial straining mode is marked by ◦.
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Figure 4.17: Comparison of the extended porous plasticity model (dashed lines) and

the GTN model (dotted lines) together with RVE simulations (solid lines) for initial

porosities for f0 = 0.001. (a) Normalized equivalent stress-strain relation, (b) void

volume fraction, f , vs equivalent strain. Fitting parameters: a1 = 1.05 a2 = 0.9 for

the extended porous plasticity model and q1 = 1.25 q2 = 1 for the GTN model. The

onset of uniaxial straining mode is marked by ◦.
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4.7 Extended porous plasticity model coupled with void coalescence

Void coalescence is known to be the final phase of the failure for ductile porous met-

als. Although there are many detailed coalescence models proposed in the literature

(see e.g. [63, 85–87] and a unified growth and coalescence model [88]), the simple

phenomenological approach in [41] is adopted to couple the porous induced damage

model with void coalescence. The coalescence model utilizes an effective porosity,

denoted by f ?, to artificially accelerate the void growth after a critical porosity level.

Therefore f ? is used in the porosity functions of the coupled model as follows:

φ =

√
σ2
eq

g1(f ?)
+

σ2
m

a1 g2(f ?)
− σy (4.7)

and

f ? =

 feff if feff ≤ fc

fc + κ(feff − fc) if feff > fc
(4.8)

with κ being a fitting parameter that determines the level of acceleration, and fc is

the critical porosity. Following the work in [38], κ and fc are selected to match the

porosity vs. effective strain curves of the model and RVE analysis. Results are shown

in Figure 4.18 for the high T region, where the coalescence can be observed in the

given equivalent strain range. The acceleration of the void growth accompanied by a

sudden decrease of the equivalent stress is observed similar to the GTN model. Notice

that the critical porosity value is similar to the one used in [38]; however, a relatively

higher κ value is used to obtain similar results with the current model.
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Figure 4.18: Comparison of RVE and the extended porous plasticity model with co-

alescence for f0 = 0.001, fc = 0.033 and κ = 20. (a) Normalized equivalent stress-

strain relation, (b) void volume fraction, f , vs equivalent strain. Fitting parameters:

a1 = 1.05 a2 = 0.9. The onset of uniaxial straining mode is marked by ◦.
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4.8 Uniaxial tension simulations on blunt notched and smooth specimens

This section covers the application of the current porous plasticity framework to ten-

sile ductile fracture simulations. Three different specimen types are used, one with a

smooth section and two with blunt circular notches in the center, as shown in Figure

4.19. Only the 1/8 portion is modeled and solved in the finite element software (see

Figure 4.21) using the symmetry boundary conditions. The notched specimens are

modeled based on the work in [89]; thus, the smallest circular area at the center are

the same for the notch radiuses of 4 and 8 mm. The center of the circular notch is in

line with the outer surface of the specimen for the 8 mm notch radius, while the 4 mm

radius notch center is 4 mm inside the outer surface to have the same initial area at the

center of the specimen. The smooth specimen is created with a 5 mm circular fillet

radius. The fillet starts at 10 mm from the left side, and the fillet center is aligned with

the edge. Material parameters given in Table 4.1 are used with hardening exponent,

n = 0.1, and initial porosity, f0 = 0.001.

𝑟 = 8 𝑚𝑚

2𝐿0 = 90 𝑚𝑚

𝑅

𝑅

𝑟 = 4 𝑚𝑚

𝑅

𝑟 = 5 𝑚𝑚

10 𝑚𝑚

Figure 4.19: Smooth and notched tensile test specimen geometry. Notch radius r = 4

and 8 mm, specimen diameter R = 40 mm, length 2L0 = 90 mm, and smooth

specimen fillet radius r = 5 mm.

Simulations are performed through 3 different damage and fracture models for each
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specimen. Two of them are the coupled ductile damage and fracture models, which

are the GTN model of Abaqus and the porous plasticity model presented in the thesis

with the extensions. The third one is the uncoupled Johnson-Cook fracture model

[25]. Here, the uncoupled model means that the damage does not have an impact on

the constitutive equations. The Johnson-Cook model utilizes a stress triaxiality and

equivalent plastic strain based equation to calculate the damage parameter with the

following equation:

εf = D1 +D2exp(D3T ) (4.9)

where D1, D2 and D3 are the material parameters, εf is the equivalent strain to frac-

ture, T is the stress triaxiality. Note that the Johnson-Cook damage model has two

additional terms that bring the effects of strain rate and temperature. These terms are

not used because both the GTN and the present porous plasticity model are rate and

temperature independent.

The evolution of the damage is given by

D =
∑ ∆ε̄p

εf
(4.10)

where ∆ε̄p is the incremental equivalent plastic strain. Then, the fracture is said to

occur at D = 1. This is a built-in ductile fracture model in Abaqus with the name

of the Johnson-Cook damage initiation model. In Abaqus terminology, the initiation

and the evolution of damage is slightly different than the conventional use. In Abaqus,

when the damage parameter, D, reaches a value of 1, it is considered that the damage

has initiated in that element and requires the user to input a damage evolution rule

to trigger element deletion and predict fracture. Therefore, the evolution of damage

corresponds to the part after D = 1. For the current analysis in Abaqus, the displace-

ment type damage evolution is used and ’displacement at failure’ value is chosen as

0 in order to delete the elements that reach D = 1. J2 plasticity model is used as the

constitutive model for the Johnson-Cook fracture simulations.

The model parameters D1, D2 and D3 are obtained from the RVE simulations at

f0 = 0.001. To obtain a better fit between the Johnson-Cook model and RVE results,

RVE is solved for additional stress triaxiality values. The values chosen for T are 1,

1.2, 1.4, 1.6 ,1.8 ,2 ,2.5 and 3. For the values lower than T = 1, the coalescence did

not occur even at large strain values; thus, they are not included. The fracture strain
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value is taken at the onset of coalescence, and the results are shown in Figure 4.20. D

parameters are obtained through curve fitting and listed in Table 4.3. Notice that there

is an asymptotic behavior as T gets closer to the lower values. However, fracture loci

is shown to be different under compressive or shear-tension combined loads due to

the change in fracture mechanisms (see e.g. [18, 90–92]); thus, the current fracture

loci is valid only at T > 0.33.

The fitting parameters of the GTN model and the porous plasticity model are shown in

Table 4.3. a1 is taken as 1.17 to match the present porous model and the GTN model

results in the notched tensile tests. The critical pore fraction, fc, the pore fraction at

failure, ff , and κ. ff is utilized in the Abaqus GTN model as an indication of com-

plete element failure, and it is used to calculate the κ. To have a comparable behavior

after the onset of void coalescence, the same κ and ff values are implemented in the

porous plasticity model, and elements that reach f = ff are deleted from the finite

element mesh. fc value is obtained from the RVE analysis. Note that void nucleation

is disregarded for both coupled damage models.

0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

1.2

RVE

Johnson-Cook

Figure 4.20: Fracture loci of the Johnson-Cook model based on the RVE simulations

for f0 = 0.001 and n = 0.1.

The explicit solver of Abaqus is used for the tension simulations with 3D elements

and reduced integration (C3D8R of Abaqus). The total number of elements for the
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Table 4.3: Model and material parameters for the tensile simulations

Elasticity and J2 plasticity

E/σ0 n E [MPa] ν

300 0.1 70000 0.3

Current porous plasticity model

a1 a2 f0 fc κ ff

1.17 0.9 0.001 0.033 4.593 0.2

GTN model (q3 = q2
1)

q1 q2 f0 fc κ ff

1.25 1 0.001 0.033 4.593 0.2

Johnson-Cook model

D1 D2 D3

0.0925 4.817 -1.673

smooth and notched specimens with r = 4 & r = 8 are 55132, 34755 and 38301,

respectively. Mesh density is increased at the lower portion of the notched and the

smooth specimens in the direction of the tensile load, as shown in Figure 4.21. The

idea here is to have a mesh with reasonable aspect ratios at the later stages of the

deformation because elements in the critical regions tend to elongate in the tensile

loading direction. Similar meshing strategies are used in [93] for round bars and

plane strain specimens. The material density is taken as 2.7 g/cm3, which is a typ-

ical density value for aluminum. In order to obtain a quasi-static analysis with the

explicit solver, mass scaling is utilized with a target time increment of 10−6. The total

time for the simulation is 1. Comparing the internal and kinetic energy of the finite

element model during the simulation is a common practice to ensure a quasi-static

solution. Abaqus recommends that the kinetic energy (ALLKE) should be 5-10% of

the internal energy (ALLIE) of the model (see [74] Energy balance). In the present

simulation with mass scaling, the kinetic energy is found to be between 0.1−0.001%

of the internal energy throughout the simulations for every specimen and modeling

approach.

Explicit simulations require the explicit versions of the user material and hardening
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Figure 4.21: Finite element models of the smooth and notched tension specimens.

subroutines (VUMAT and VUHARD). The implementation of the porous plasticity

model is not specifically addressed for VUMAT in the implementation chapter be-

cause the implementation can be done for both types of subroutines, and conversion

from UMAT to VUMAT is a straightforward procedure for the given porous plasticity

model. However, the main differences between UMAT and VUMAT will be stated

here briefly. Firstly, an explicit finite element solution does not require a tangent

modulus from the subroutine. The rotation of the tensorial variables is not required.

The order of the shear components in Voigt notation of stress and strain is different.

For UMAT, the order is 12, 13, and 23; however, for VUMAT, the order changes to

12, 23, and 13. Another difference is that the shear strain components are not stored

as engineering strains for the VUMAT subroutine. Moreover, VUHARD, which is

used to perform simulations with the desired strain hardening equation, is basically

the same as UHARD subroutine with some differences in the name of the variables

inside the subroutine (Refer to [74], User subroutine reference guide for the details

of the user subroutines). Note that name differences are also present for UMAT and

VUMAT subroutines.

The results from the tension simulations are shown in Figure 4.22. In Figure 4.22a,

engineering stress-strain response is demonstrated. Stress is normalized with the ini-

tial yield stress, σ0, and the initial area of the top surface, A0 = π(R/2)2/4. It is clear
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Figure 4.22: Tensile simulation results for 3 different specimens. (a) Normalized eng.

stress vs. eng. strain, (b) evolution of porosity at the critical element.

that all of the models predict similar tensile stresses and fracture points. The coupled

models yield slightly lower stresses in each case as a result of porosity induced dam-

age. In the notched specimens, both the GTN and the present porous model produce

almost identical solutions while the Johnson-Cook model predicts fracture at a higher
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strain value. The biggest difference occurs in the smooth specimen. The porous plas-

ticity model anticipates the latest fracture point compared to GTN and Johnson-Cook

models. Another observation here is that the notched specimens show a sudden drop

in the stress indicating a faster crack propagation while the smooth specimen fails rel-

atively slowly. Additionally, the Johnson-Cook model yields the most conservative

result only for the smooth specimen.

In Figure 4.22b, the evolution of the void volume fraction, f , is shown for the coupled

models. The value is taken from the element at the center of the model where the crack

initiates for all three specimens. The results are in line with the stress-strain relations,

where the predictions for the notched specimens are almost identical and the GTN

model predicts a higher void growth which results in a smaller fracture strain than the

porous plasticity model.

0 0.05 0.1 0.15 0.2 0.25 0.3

0

0.5

1

1.5

2

2.5

Figure 4.23: Evolution of the stress triaxiality at the critical element.

The stress triaxiality evolution is demonstrated in Figure 4.23. Again data are taken

from the critical element, which is the element that fails first. The results show that

the stress triaxiality starts at around 0.8 and 1 for the notched specimens with r = 8

and r = 4, respectively. As the notch radius gets smaller, stress triaxiality increases in

the center of the specimen. Also, with a smaller notch radius, T reaches even higher

values before the fracture point. Moreover, the specimen with a smooth section is
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under a homogeneous uniaxial deformation state initially (T = 1/3). The increase in

the macroscopic deformation results in strain localization and necking in the middle

section. Consequently, T gradually increases and reaches a value slightly higher

than 1 just before the fracture. The final sudden increase in the T corresponds to

the deformation after the onset of void coalescence which might not correspond to

physical phenomena.
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Figure 4.24: Final fracture shapes and the equivalent plastic strain distribution for the

notched specimen with r = 8 mm.

In Figures 4.24, 4.25 and 4.26, the final fracture shapes of the notched and the smooth

specimens are shown together with the equivalent plastic strain distribution. All three

models show a cup-shaped fracture surface where the crack initiates in the center

and propagates outwards horizontally. It should be noted that the specimen with

a smaller notch radius has a relatively horizontal fracture surface than others. The

equivalent plastic strain distributions are highly similar for the notched specimens.

The most significant difference again is seen in the smooth specimen where the porous

model showed a higher plastic strain accumulation before fracture because of the

larger fracture strain.

An important issue to note here is that the a1 value of the porous plasticity model

used here is larger than what is found in the RVE simulations. Having a smaller a1
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Figure 4.25: Final fracture shapes and the equivalent plastic strain distribution for the

notched specimen with r = 4 mm.
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Figure 4.26: Final fracture shapes and the equivalent plastic strain distribution for the

specimen with a smooth middle section.

value results in a slower void growth for the porous model. Although a1 was found to

be 1.05 in the RVE study, here, it is used as 1.17 to closely match the GTN model and

the present porous plasticity model in the notched tensile simulations. This approach
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is preferred in order to show that the present model can predict similarly to the well-

known GTN model. However, it is observed that at the smooth specimen, the present

model predicts slower growth of porosity and a higher fracture strain compared to the

GTN model. Such behavior is expected because RVE study showed that the GTN

model has a tendency to over-predict the porosity evolution at lower T regions.
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CHAPTER 5

CONCLUSION

This thesis covers the implementation and assessment of a rate-independent porous

plasticity model based on the yield potential in [1]. The potential is formed in terms of

equivalent and hydrostatic stress components and two porosity functions. The model

covers only the growth of existing voids and disregards void nucleation. Assessment

is done through RVE calculations under constant stress triaxiality. The model is im-

plemented as a user material subroutine in Abaqus using a basic predictive-corrective

scheme of classical J2 plasticity for the solution of constitutive equations. The con-

sistent tangent modulus is calculated numerically with the perturbation method. RVE

calculations are conducted with a displacement controlled method in a 3D setting.

Comparisons are made with the well-known GTN model. An extension is proposed to

the constitutive equations in order to improve the performance of the model based on

the RVE analysis. Moreover, the extended model’s performance is addressed through

tension simulations on notched and smooth bars. Comparisons are made with the

GTN model and the uncoupled Johnson-Cook fracture model. The key findings of

this thesis are listed below.

• The comparison between the yield surfaces of Cocks and Gurson shows that

these potentials have similar behaviors at higher porosity levels (f ≈ 0.1).

At lower porosity, they are in agreement up to high triaxiality regions. After

(T > 2), Cocks’ potential predicts a higher yield point compared to Gurson’s

potential.

• Results show that the initial proposition of the porous plasticity model under-

predicts the yield point at high stress triaxiality regime compared to the RVE

analysis, which is consistent with the yield surface differences with the GTN
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model.

• Extension of the model provides significant improvements in the predictions

of the model for both void growth and equivalent stress-strain relation while

keeping the simple formulation.

• A simple coalescence relation is implemented to the present porous plasticity

framework to predict the final failure phase of ductile damage and fracture.

• Tension simulations indicate that the extended model is able to yield identical

results to the GTN model in notched specimens in terms of porosity evolution

and engineering stress-strain response. The results from the smooth specimen

showed that the extended model predicts slightly higher fracture strain com-

pared to the GTN model.

The thesis presents a starting point for the development of an alternative porous plas-

ticity model for ductile damage and fracture prediction. Although the results are

convincing to some degree, there are still areas to be improved in terms of both com-

putational and poro-mechanical aspects.

• The damage evolution related to the void growth is performed at the end of the

prediction-correction scheme. Therefore, the yield function is not affected by

the change in porosity in the current increment of the numerical solution. Al-

though this problem is solved by using sufficiently small step sizes, and conver-

gent solutions are obtained. More robust numerical solution algorithms should

be implemented similar to the GTN implementations.

• The current work only covers the growth of existing voids. The void nucleation

phenomena should be incorporated into the framework.

• Although stress triaxiality is of high importance for void growth, the Lode pa-

rameter is also proven to be effective. The effect can be included in the frame-

work by adding an L dependent growth term to the void evolution rule similar

to the shear modified GTN model. In addition, the performance of a L de-

pendent model can be tested through the presented RVE analysis at different

constant L values.
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• Fracture simulations with the presented framework showed similar behavior to

the existing models. However, the model should also be validated with ex-

perimental studies under different boundary conditions. Moreover, the random

void distribution in the real material can be simulated through the developed

user material subroutine by using a position dependent random initial porosity.

• The presented model can be coupled with a recently developed porosity based

cohesive zone model [94–97] to simulate crack initiation and propagation with

physically consistent models.
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