
1

ON DECODING INTERLEAVED REED-SOLOMON CODES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF APPLIED MATHEMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

OĞUZ YAYLA

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

CRYPTOGRAPHY

SEPTEMBER 2011

Approval of the thesis:

ON DECODING INTERLEAVED REED-SOLOMON CODES

submitted by OĞUZ YAYLA in partial fulfillment of the requirements for the degree of Doc-
tor of Philosophy in Department of Cryptography, Middle East Technical University
by,

Prof. Dr. Ersan Akyıldız
Director, Graduate School of Applied Mathematics

Prof. Dr. Ferruh Özbudak
Head of Department, Cryptography

Prof. Dr. Ferruh Özbudak
Supervisor, Mathematics Department, METU

Examining Committee Members:

Prof. Dr. Ersan Akyıldız
Mathematics Department, METU

Prof. Dr. Ferruh Özbudak
Mathematics Department, METU

Assoc. Prof. Dr. Ali Doğanaksoy
Mathematics Department, METU

Dr. Hamdi Murat Yıldırım
Dept. of Computer Tech. and Information Systems, Bikent Uni.

Dr. Burcu Gülmez Temür
Mathematics Department, Atılım University

Date:

I hereby declare that all information in this document has been obtained and presented
in accordance with academic rules and ethical conduct. I also declare that, as required
by these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Name, Last Name: OĞUZ YAYLA

Signature :

iii

ABSTRACT

ON DECODING INTERLEAVED REED-SOLOMON CODES

Yayla, Oğuz

Ph.D., Department of Cryptography

Supervisor : Prof. Dr. Ferruh Özbudak

September 2011, 53 pages

Probabilistic simultaneous polynomial reconstruction algorithm of Bleichenbacher-Kiayias-

Yung is extended to the polynomials whose degrees are allowed to be distinct. Furthermore,

it is observed that probability of the algorithm can be increased. Specifically, for a finite field

F, we present a probabilistic algorithm which can recover polynomials p1, . . . , pr ∈ F[x] of

degree less than k1, k2, . . . , kr, respectively with given field evaluations pl(zi) = yi,l for all i ∈ I,

|I| = t and l ∈ [r] with probability at least 1 − (n − t)/|F| and with time complexity at most

O((nr)3). Next, by using this algorithm, we present a probabilistic decoder for interleaved

Reed-Solomon codes. It is observed that interleaved Reed-Solomon codes over F with rate R

can be decoded up to burst error rate r
r+1 (1−R) probabilistically for an interleaving parameter

r. It is proved that a Reed-Solomon code RS(n; k) can be decoded up to error rate r
r+1 (1 −

R′) for R′ =
(k−1)(r+1)+2

2n when probabilistic interleaved Reed-Solomon decoders are applied.

Similarly, for a finite field Fq2 , it is proved that q-folded Hermitian codes over Fq2q with rate R

can be decoded up to error rate q
q+1 (1 − R) probabilistically. On the other hand, it is observed

that interleaved codes whose subcodes would have different minimum distances can be list

decodable up to radius of minimum of list decoding radiuses of subcodes. Specifically, we

present a list decoding algorithm for C, which is interleaving of C1, . . . ,Cb whose minimum

iv

distances would be different, decoding up to radius of minimum of list decoding radiuses of

C1, . . . ,Cb with list size polynomial in the maximum of list sizes of C1, . . . ,Cb and with time

complexity polynomial in list size of C and b. Next, by using this list decoding algorithm for

interleaved codes, we obtained new list decoding algorithm for qh-folded Hermitian codes

for q standing for field size the code defined and h is any positive integer. The decoding

algorithm list decodes qh-folded Hermitian codes for radius that is generally better than radius

of Guruswami-Sudan algorithm, with time complexity and list size polynomial in list size of

h-folded Reed-Solomon codes defined over Fq2 .

Keywords: interleaved codes, interleaved Reed-Solomon codes, simultaneous polynomial re-

construction, list decoding, folded Hermitian codes

v

ÖZ

GEÇMELİ REED-SOLOMON KODLARININ ÇÖZÜMLENMESİ ÜZERİNE

Yayla, Oğuz

Doktora, Kriptografi Bölümü

Tez Yöneticisi : Prof. Dr. Ferruh Özbudak

Eylül 2011, 53 sayfa

Bleichenbacher-Kiayias-Yung olasılıksal eşzamanlı polinom geriçatılması algoritması poli-

nomların dereceleri farklı olduğu durumlara genelleştirilmiştir. Ayrıca, olasılığın artırıla-

bileceği de gözlemlenmiştir. Belirgin şekliyle, F sonlu bir cisimi için, pl(zi) = yi,l i ∈

I, |I| = t ve l ∈ [r] polinom değerleri verildiğinde, dereceleri sırasıyla k1, k2, . . . , kr olan

p1, . . . , pr ∈ F[x] polinomlarını en azından 1−(n−t)/|F| olasılığı ve en çok O((nr)3) hesaplama

karmaşıklığında eşzamanlı geriçatan olasılıksal bir algoritma sunulmuştur. Bu algoritmanın

kullanımıyla geçmeli Reed-Solomon kodları için olasılıksal çözümleyici sunulmuştur. Bu

çözümleyici, bigi oranı R olan F üzerinde tanımlı r geçmeli Reed-Solomon kodları r
r+1 (1−R)

yığılma hata oranına kadar olasılıksal çözümleyebilir. Olasılıksal geçmeli Reed-Solomon kod

çözümleyicisi kullanıldığında verilen bir Reed-Solomon kodu RS(n; k) R′ =
(k−1)(r+1)+2

2n için
r

r+1 (1−R′) hata oranına kadar çözümlenebileceği ispatlanmıştır. Benzer şekilde, bir Fq2 sonlu

cismi için, bilgi oranı R olan ve Fq2q üzerinde tanımlı q-katlı Hermityan kodlarının q
q+1 (1−R)

hata oranına kadar olasılıksal çözümlenebileceği istalanmıştır. Diğer taraftan, altkodlarının en

az aralıkları farklı olduğunda bile geçmeli kodların, altkodlarının en küçük liste çözümleme

çapına kadar çözümlenebileceği gösterilmiştir. Diğer bir ifadeyle, en az aralıkları farklı ola-

bilen C1, . . . ,Cb kodlarının geçirilmesi ile oluşan C kodunu, C1, . . . ,Cb kodlarının en küçük

vi

liste çözümleme çapına kadar, C1, . . . ,Cb kodlarının en büyük liste boyutunun polinom katı

liste büyüklüğünde ve bu büyüklük ve b sabitinin bir polinom katı zamanda çözebilen bir algo-

ritma sunulmuştur. Bu algoritmanın kullanımıyla tanımlandığı cisim büyüküğü q olan ve her-

hangibir h doğal sayısı için qh-katlı Hermityan kodlarını listeleme yöntemiyle çözümleyebilen

yeni bir algoritma sunulmuştur. Bu algoritma, qh-katlı Hermityan kodlarını, Guruswami-

Sudan algoritmasından daha iyi bir çapa kadar, Fq2 üzerinde tanımlı h-katlı Reed-Solomon

kodlarının liste büyüklüğünün polinom katı hesap karmaşıklığında ve liste büyüklüğünde

çözümler.

Anahtar Kelimeler: geçmeli kodlar, geçmeli Reed-Solomon kodlar, eşzamanlı polinom geri-

çatılması, listeleme yöntemiyle kod çözümlemesi, katlı Hermityan kodlar

vii

Eşim Saniye’ye ve Kızım Duru’ya

viii

ACKNOWLEDGMENTS

“No problem can be solved from the same level of consciousness that created it.”

Albert Einstein

I would like to express my gratitude to all those who supported me in completing this thesis. I

would like to express my deepest gratitude to my supervisor Prof. Dr. Ferruh Özbudak for his

guidance and insight he provided throughout this research. His ideas and tremendous support

had a major influence on this thesis.

I am indebted to all the members of the Institute of Applied Mathematics at Middle East

Technical University for their friendship, understanding and help. I would also like to take

this opportunity to thank to Prof. Dr. Ersan Akyıldız, director of IAM, for his support during

my graduate study. Many thanks to all my colleagues and office mates at the Middle East

Technical University.

I also would like to send my special thanks to all my close relatives and my parents-in-law,

Gülersönmez family.

And, a huge thanks to my family: to Mum and Dad - thank you for all your support over the

years; to Selim, for being there no matter what.

And finally, I would like to thank my wife Saniye and my daughter Duru for their extraordi-

nary patience and continuous support during the preparation of this thesis and being with me

all the way. Without their unending love, neither this thesis nor my life would be complete.

I also gratefully acknowledge the financial support of TÜBİTAK BİDEB 2211 Program dur-

ing this thesis.

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

DEDICATION . viii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . x

LIST OF TABLES . xii

CHAPTERS

1 INTRODUCTION . 1

2 BERLEKAMP-WELCH ALGORITHM AND ITS GENERALIZATIONS . . 3

2.1 Decoding Problem . 3

2.2 Berlekamp-Welch Algorithm . 4

2.3 Sudan’s Algorithm . 5

3 DECODING INTERLEAVED REED-SOLOMON CODES 8

3.1 Simultaneous Polynomial Reconstruction 9

3.2 Decoding Heterogeneous Interleaved Reed-Solomon Codes 18

3.3 Decoding RS Codes with Heterogeneous IRS Decoder 22

4 LIST DECODING INTERLEAVED CODES 28

4.1 Previous Results . 29

4.2 List Decoding Interleaved Codes 30

5 DECODING FOLDED HERMITIAN CODES 36

5.1 Folded Hermitian Codes . 37

5.2 Decoding Folded Hermitian Codes with Heterogeneous IRS Decoder 41

5.3 List Decoding Folded Hermitian Codes 43

x

6 CONCLUSION . 48

REFERENCES . 49

VITA . 52

xi

LIST OF TABLES

TABLES

Table 3.1 Simulated Failure Probability for the SPR problem n = 15, k = [2, 3], |F| =

24, total trial = 107 . 17

Table 3.2 Simulated Failure Probability for the SPR problem n = 15, k = [4, 4], |F| =

24, total trial = 107 . 18

Table 3.3 Simulated Failure Probability for Interleaved Reed-Solomon Codes 21

Table 3.4 Simulated Failure Probability for Reed-Solomon Codes 27

Table 5.1 Simulated Failure Probability for Hermitian Codes 42

xii

CHAPTER 1

INTRODUCTION

Interleaved codes are defined to be interleaving finitely many subcodes column wise. Each

column of any codeword of the interleaved codes is a codeword of the subcodes. And, each

row is treated as a single symbol of the interleaved code. An illustrated codeword c of a

interleaved code C which is interleaving of subcodes C1,C2, . . . ,Cr is presented below. Each

ci = (ci,1, ci,2, . . . , ci,n)T is a codeword in Ci for i = 1, 2, . . . , r.

c = (c1, c2, . . . , cr) =



c1,1 c2,1 . . . cr,1

c1,2 c2,2 . . . cr,2
...

...
...

c1,n c2,n . . . cr,n


In this thesis, we generally consider Reed-Solomon codes as subcodes. In a Reed-Solomon

code RS(n, k) defined over a finite field, a message of length less than k is encoded into a poly-

nomial of degree less than k as coefficients, and codewords are evaluations of those polyno-

mials at n distinct elements of the finite field. The decoding problem of Reed-Solomon codes

known as the Polynomial Reconstruction (PR) Problem is one of the challenging problems

in coding theory and cryptography. Some well known RS decoding algorithms are briefly

presented in Chapter 2.

An Interleaved Reed-Solomon (IRS) code for interleaving parameter r consists of r many

Reed-Solomon codes of length n and dimensions k1, k2, . . . , kr. If dimensions of subcodes

are equal to each other, the code is called homogeneous IRS-code, otherwise it is called het-

erogeneous IRS. Therefore, decoding of IRS codes relies on a variation of PR called Simul-

taneous Polynomial Reconstruction (SPR). Bleichenbacher, Kiayias, and Yung [2] present a

probabilistic algorithm that solves SPR problem for homogeneous case. Their algorithm is

1

probabilistic and is employed in settings where instance of the algorithm is assumed to be

random.

In this thesis, we mainly focus on heterogeneous IRS codes and their application. Schmidt,

Sidorenko and Bossert [32] present an algorithm (SSB algorithm) using Berlekamp-Massey

approach to decode heterogeneous IRS codes for burst errors, i.e. for errors occurring at each

subcode (row) simultaneously. We present a probabilistic solution of SPR problem using

Berlekamp-Welch approach which also decodes IRS codes for burst errors in Section 3.1.

Apart from decoding IRS codes, we also study list decoding of interleaved codes (possibly

nonlinear) which is a more general frame work compared to decoding IRS codes. A list-

decoding algorithm is an algorithm which tries to construct a list which includes codewords

within a specified radius of an input codeword. The central problem of list decoding is to

identify the radius up to which a list decoding algorithm exists in terms of the output list size

and efficiency of the algorithm. Gopalan et al.[8] showed that any interleaved codes can be list

decodable up to radius what subcode can be. Moreover, they presented an efficient algorithm

for list decoding of interleaved codes. In Section 4.2, we present a list decoding algorithm for

heterogeneous interleaved codes running in polynomial time and output list does not contain

so many codewords.

Besides interleaving, Reed-Solomon codes are also generalized by choosing polynomials and

evaluation elements from a generalized space. Algebraic-geometry (AG) codes are such gen-

eralization of Reed-Solomon codes. Polynomials are chosen from the Riemann-Roch space

of an algebraic function field and evaluation elements are chosen as rational places of the

function filed. For instance, Hermitian codes are defined on the function field of Hermitian

curve. It is shown in [22] that Hermitian codes can be written as interleaving of heterogeneous

Reed-Solomon codes. Hence, single and list decoders of heterogeneous IRS codes can be ap-

plied to decoding Hermitian codes and list decoding Hermitian codes, which is presented in

Section 5.2 and Section 5.3, respectively.

2

CHAPTER 2

BERLEKAMP-WELCH ALGORITHM AND ITS

GENERALIZATIONS

In this chapter, we first briefly mention about the decoding problem of Reed-Solomon codes.

Then, a solution to this problem is presented in the point of view of Berlekamp and Welch

[1]. Later, Sudan’s algorithm extending Berlekamp-Welch approach for giving a list decoding

algorithm of Reed-Solomon codes is presented. Finally, main idea of Guruswami-Sudan

algorithm which improves the Sudan’s algorithm is mentioned.

2.1 Decoding Problem

In Reed-Solomon (RS) codes RS (n, k) of length n and dimension k defined over a finite field

Fq, message m = (p0, p1, . . . , pk−1) is embedded into the polynomials p(x) = p0 + p1x +

. . . + pk−1xk−1 of degree at most k − 1. Note that all pk−1, pk−2, . . . , pk− j may be zero for

some j ≤ k. Next, the message is encoded as polynomial evaluations at distinct field elements

z1, z2, . . . , zn ∈ Fq such that c = (p(z1), p(z2), . . . , p(zn)). This whole procedure is called RS

encoding. After that, codeword c is sent.

At the receiver end, the receiver gets r = (y1, y2, . . . , yn) and knows the evaluation values

z1, z2, . . . , zn. She also assumes that at least t many of yi satisfy yi = p(zi) for i = 1, 2, . . . , n.

She aims to recover m or equivalently p(x) from the pairs (zi, yi) for i = 1, 2, . . . , n, known as

decoding problem of RS codes.

3

2.2 Berlekamp-Welch Algorithm

In Berlekamp-Welch approach to decoding problem of RS codes, the receiver tries to find

degree n − t polynomial E(x) and degree at most n − t + k − 1 polinomial m(x) satisfying the

linear system

m(zi) = yiE(zi), for i = 1, 2, . . . , n. (2.1)

It can be shown that pair defined as

E(x) = xn−t−∆(y,p(zi))n
i=1

e′∏
j=1

(x − zi j), m(x) = p(x)E(x)

satisfies (2.1) where zi j for j = 1, 2, . . . , e′ ≤ n − t are the error locations occurred during the

sending operation of c. This is the reason why a linear system as (2.1) is constructed and to

be solved. We note that we also handle the case that more than n+k−1
2 agreements occur as it

is applied in the definition of E(x).

In Berlekamp-Welch approach, the receiver tries to solve (2.1) having totally at most 2(n−t)+k

unknowns which are coefficients of E(x) and m(x). We know the existence of a solution but

not uniqueness. There may be many solutions. We only require that the ratio m(x)
E(x) is unique,

which is enough for uniqueness of the message. If number of agreement places satisfies

t > n+k−1
2 , then this requirement is achieved. The proof is as follow. Let (E1(x),m1(x)) and

(E2(x),m2(x)) be two pairs satisfying (2.1). Then define R(x) := E1(x)m2(x) − E2(x)m1(x)

which has n roots z1, z2, . . . , zn. However, R(x) has degree at most 2(n − t) + k − 1 < n as

t > n+k−1
2 . Therefore, R is a zero polynomial, and we have the equalities m1(x)

E1(x) =
m2(x)
E2(x) =

m(x)
E(x) = p(x).

We now present the Berlekamp-Welch algorithm below as Algorihtm 1.

We observed that Berlekamp-Welch algorithm returns the correct solution if the number of

errors is less than n−k+1
2 . Otherwise, the algorithm returns a failure, which means that number

of errors is not in the responsible range. This is the desired decoding procedure.

We study extension of Berlekamp-Welch approach for Interleaved Reed-Solomon codes in

Chapter 3. Apart from Berlekamp-Welch approach, we impose some extra conditions on the

linear system so that it has unique solution, and then we try to find the unique solution, which

is the one constructed as a proof of existence.

4

Algorithm 1 Berlekamp-Welch Algorithm
Require: Fq, n ≤ q, 1 < k ≤ n, pairwise distinct z1, z2, . . . , zn ∈ Fq, y1, y2, . . . , yn ∈ Fq and

t > n+k−1
2 .

Ensure: p(x) of degree at most k−1 satisfying p(zi) = yi for at least t values of i = 1, 2, . . . , n

or FAILURE.

1: Solve the linear system (2.1). If not possible,return FAILURE.

2: Compute a solution of the system: m(x) and E(x)

3: Find p(x) = m(x)/E(x). If not possible, return FAILURE.

4: return p(x) if p(zi) = yi for at least t values of i = 1, 2, . . . , n else return FAILURE.

One can also consider Berlekamp-Welch approach as follows

• Interpolate R(x, y) = m(x)− yE(x) where degree of m is at most n− t + k− 1 and degree

of E is n − t and

• Find the root p(x) of Q[x](y) := R(x, y).

Correctness follows form the fact that R(x, p(x)) has t roots zi1 , zi2 , . . . , zit but its degree is

n − t + k − 1 < t if t is required to be greater than n+k−1
2 . Therefore, R(x, p(x)) is a zero

polynomial, i.e. p(x) is a root of R(x, y). On the other hand, we already know the existence of

m and E.

Sudan extends this approach, and presents a crucial list decoding algorithm for RS codes in

his milestone work [35]. This is presented in the next section.

2.3 Sudan’s Algorithm

Sudan observed that Berlekamp-Welch algorithm has two stages interpolation and root finding

as stated in the previous section. Besides that, Sudan used the crucial fact that the receiver has

at least t agreements, hence interpolating a polynomial Q(x, y) = Q0(x) + yQ1(x) having y-

degree 1 from the pairs (zi, yi) for i = 1, . . . , n and satisfying degQ0 < t and degQ1 < t−(k−1)

makes Q(x, p(x)) have more roots than its degree, that is, a zero polynomial. Therefore, p(x)

is a root of Q(x, y).

Interpolation can be accomplished by solving the linear system whose variables are coeffi-

5

cients of Q(x, y). Interpolation always finds a solution when number of coefficients 2t − k + 1

of Q(x, y) is greater than the number of equations n, i.e. when t > n+k−1
2 , which was also the

case in Berlekamp-Welch case.

Sudan extended this approach to the more general case: interpolate a Q(x, y) whose y-degree

is greater than 1 then find all its roots to constitute a list of possible message polynomials, one

of which is the sent message p(x). This is called as list decoding algorithm. In this case, the

number of coefficients of Q(x, y) = Q0(x) + yQ1(x) + . . .+ yDQD(x) where degQi < t− i(k−1)

for i = 0, 1, . . . ,D and D < t/(k − 1) is

b t
k−1c∑
i=0

(t − i(k − 1)) = (
⌊ t
k − 1

⌋
+ 1)(t −

⌊ t
k − 1

⌋ k − 1
2

).

On the other hand, we have n linear equations. If number of unknowns exceeds the number

of equations, than there always exist such a polynomial Q, that is when t >
√

2n(k − 1).

Sudan’s algorithm is presented below as Algorithm 2.

Algorithm 2 Sudan’s Algorithm
Require: Fq, n ≤ q, 1 < k ≤ n, pairwise distinct z1, z2, . . . , zn ∈ Fq, y1, y2, . . . , yn ∈ Fq and

t >
√

2n(k − 1).

Ensure: L = {p(x) of degree at most k − 1 satisfying p(zi) = yi for at least t values of

i = 1, 2, . . . , n}

1: Interpolate Q(x, y) = Q0(x) + yQ1(x) + . . . + yDQD(x) where degQi < t − i(k − 1) for

i = 0, 1, . . . ,D and D < t/(k − 1)

2: find all degree at most k − 1 polynomials p(x) such that Q(x, p(x)) � 0. If p(zi) = yi for

at least t many of i = 1 . . . , n, then include p(x) into output list L

3: return L.

In 1999, Guruswami and Sudan [11] further extended the above approach as follows. They

also imposed on Q that it has multiplicity r at each pair (zi, yi) for i = 1, . . . , n so that number

of roots of Q(x, p(x)) increases to rt.

In this case, the number of coefficients of Q(x, y) = Q0(x) + yQ1(x) + . . . + yDQD(x) where

degQi < rt − i(k − 1) for i = 0, 1, . . . ,D and D < rt/(k − 1) is

b rt
k−1c∑
i=0

(rt − i(k − 1)) = (
⌊ rt
k − 1

⌋
+ 1)(rt −

⌊ rt
k − 1

⌋ k − 1
2

).

6

On the other hand, we have n
(
r+1

2

)
linear equations since we also impose new constraints on

the coefficients of Q. If number of unknowns exceeds the number of equations, that is if

t >
√

n(k − 1)(1 + 1/r), then there always exists such a polynomial Q.

We note that Guruswami-Sudan algorithm is also valid for more general codes than RS codes

called as algebraic-geometric codes, and we study application of Guruswami-Sudan algorithm

for a special algebraic-geometric code family Hermitian codes in Section 5.3.

7

CHAPTER 3

DECODING INTERLEAVED REED-SOLOMON CODES

We consider Interleaved Reed-Solomon (IRS) code C including r Reed-Solomon codes C1,

C2, . . . ,Cr of length n and dimensions k1, k2, . . . , kr, respectively. A codeword c of C consists

of columns of codewords from each code Ci, i = 1, . . . , r. If k1 = k2 = · · · = kr, the code is

called homogeneous IRS code, otherwise it is called heterogeneous IRS code.

Interleaved Reed-Solomon (IRS) codes are investigated by different authors like Krachkovsky,

Lee, and Garg [17, 18, 19], Bleichenbacher, Kiayias, and Yung [2], Brown, Minder and

Shokrollahi [4, 5], Justesen, Thommesen, and Hoholdt [16], as well as Parvaresh and Vardy

[21]. Then, Schmidt, Sidorenko and Bossert study IRS codes in their recent publications

[27, 28, 29, 30, 31, 32]. IRS codes are mainly considered in applications where error bursts

occur, since IRS codes are most effective if correlated errors affect all words of the interleaved

scheme simultaneously.

Decoding heterogeneous IRS codes have first been considered in [19], and this is based on

Berlekamp-Massey approach. Some of the properties of heterogeneous constructions have

been investigated in [30]. Heterogeneous IRS codes are also considered in decoding of a

single RS code beyond half the minimum distance like described in [31], where the prob-

lem of decoding a single low-rate RS code is transformed into the problem of decoding a

heterogeneous IRS code.

In this chapter, we mainly focus on decoding heterogeneous IRS codes and their applica-

tion. In Section 3.1, we first extend the study of Bleichenbacher, Kiayias, and Yung [2] that

proposes a probabilistic algorithm based on Berlekamp-Welch Algorithm for simultaneous

reconstruction of polynomials whose degrees are allowed to be distinct. Next, in Section 3.2,

we decode heterogeneous IRS codes with the algorithm given in Section 3.1. Then, we apply

8

this heterogeneous IRS decoder to RS codes and folded-Hermitian codes in Section 3.3 and

Section 5.2, respectively.

3.1 Simultaneous Polynomial Reconstruction

The decoding problem of RS codes known as the Polynomial Reconstruction (PR) Problem

is one of the challenging problems in coding theory. We look for a variation of PR called

Simultaneous Polynomial Reconstruction (SPR). Firstly, we extend definition of SPR given

in [2] to the heterogeneous case. We use the notation [n] for the set {1, 2, . . . , n}.

Definition 3.1.1 (Simultaneous Polynomial Reconstruction-SPR). For parameters n, t, r, k1,

k2, . . . , kr ∈ N and pairwise distinct z1, . . . , zn ∈ F, an instance of SPR is a set of tuples〈
yi,1, . . . , yi,r

〉n
i=1 over a finite field F that satisfies the following: There exists an I ⊂ [n] with

|I| = t, and polynomials p1, . . . , pr ∈ F[x] of degree less than k1, k2 . . . , kr, respectively such

that pl(zi) = yi,l for all i ∈ I and l ∈ [r].

Bleichenbacher, Kiayias, and Yung [2] present a probabilistic algorithm based on Berlekamp-

Welch algorithm that solves SPR problem for k1 = k2 = · · · = kr. Their algorithm is proba-

bilistic and is employed in settings where instance of the algorithm is assumed to be random.

SPR problem for distinct ki, i = 1, . . . , r can be solved by simply choosing k = max{k1, . . . , kr}

and running BKY algorithm for this k. But, this method solves SPR problem for larger t. In

this section, we present a method with handling distinct degrees, which solves the problem

probabilistically for smaller t under the random instance assumption, which means that poly-

nomials p1, . . . , pr ∈ F[x] and values yi,l for i ∈ [n] − I and l ∈ [r] are random.

We start with some observations for the SPR problem. Let 〈yi1, . . . , yir〉
n
i=1 be a given SPR

instance. In the Berlekamp-Welch approach [1, 10], we know that error locator polynomial of

a message polynomial pl(x) given by E(x) = Πi<I(x − zi) of degree n − t with leading term 1

and received message polynomial ml(x) = pl(x)E(x) of degree n − t + kl − 1 satisfy the linear

system

ml(zi) = yilE(zi) i = 1, . . . , n (3.1)

for each l = 1, . . . , r where coefficients of polynomials ml and E for l = 1, . . . , r are defined

as variables.

9

Thus we know the existence of a solution to (3.1). If, in addition, it has a unique solu-

tion property, the solution will be (m1,m2, . . . ,mr, E) as constructed above. Then, pl(x) for

l = 1, 2, . . . , r are easily recovered by divisions. It is easy to observe that (3.1) has a unique

solution if it has full rank and the number of equations nr is as large as the number of un-

knowns r(n − t) +
∑r

j=1 k j + n − t. The system does not have the full rank property for some

instances. A necessary condition that (3.1) has full rank is t ≥ kl for each l = 1, 2, . . . , r. In

other words, if t < kl for some l ∈ [r], then (3.1) has never full rank. On the other hand, the

number of equations is as large as the number of unknowns if and only if

nr ≥ r(n − t) +

r∑
j=1

k j + n − t

or equivalently,

t ≥
n +

∑r
j=1 k j

r + 1
. (3.2)

Therefore, Algorithm 3 presented below is a generalization of BKY algorithm according to

Definition 3.1.1 solving SPR problem probabilistically for t values satisfying

t ≥ max{k1, k2, . . . , kr,
n +

∑r
j=1 k j

r + 1
}. (3.3)

Algorithm 3 Simultaneous Polynomial Reconstruction Probabilistically
Require:

〈
yi,1, . . . , yi,r

〉n
i=1 ∈ F

nr. Parameters n, k1, . . . , kr, t ∈ N and distinct z1, . . . , zn ∈ F

satisfying max{k1, k2, . . . , kr,
n+

∑r
j=1 k j

r+1 } ≤ t ≤ n ≤ |F|.

Ensure: {p1, . . . , pr} satisfying for each l ∈ [r], pl(zi) = yi,l at least t values of i ∈ [n] or

FAILURE.

1: Form the linear system (3.1). Let the matrix of the system be A.

2: if A is full rank then

3: Compute solution of the system: m1,m2,. . .,mr and E

4: Find p1 = m1/E, . . . , pr = mr/E.

5: return {p1, . . . , pr}.

6: else

7: return FAILURE

8: end if

Our algorithm is an extension of BKY algorithm [2], but they have different sub-procedures,

and this difference is explained below. Moreover, BKY algorithm is not designed to produce

10

an output in the case zi = 0 for any i ∈ [n], but Algorithm 3 is capable to do that, which is a

necessary case in Section 5.2.

Similar to [2], the matrix A constructed by the algorithm is full rank with high probability,

assuming that the SPR input to the algorithm is distributed randomly.

Theorem 3.1.2 Assuming the SPR instance is random, the system (3.1) constructed by Algo-

rithm 3 accepts at most one solution with probability at least 1 − (n − t)/|F|.

Proof. Let
〈
yi,1, . . . , yi,r

〉n
i=1 be an instance to the SPR problem and let A denote the matrix of

the system of linear equations (3.1).

We start by investigating the structure of the matrix A. Consider the following matrices, for

l = 1, . . . , r:

Ml =



1 z1 z2
1 . . . zn−t+kl−1

1

1 z2 z2
2 . . . zn−t+kl−1

2
...

...
...

...

1 zn z2
n . . . zn−t+kl−1

n



El =



y1,l y1,lz1
1 . . . y1,lzn−t−1

1

y2,l y2,lz1
2 . . . y2,lzn−t−1

2
...

...
...

yn,l yn,lz1
n . . . yn,lzn−t−1

n


Given these definitions, it follows that the matrix of the system (3.1) can be written as follows:

A =



M1 0 . . . 0 −E1

0 M2 . . . 0 −E2
...

...
...

0 0 . . . Mr −Er


We know that A is full rank if its any row eliminated minor Â is nonsingular. Hence, prob-

ability that A is full rank is always higher than probability that Â is nonsingular. In order to

calculate the probability that Â is nonsingular, we follow a way similar to [2] but we have to

take care of distinct degrees.

11

We define a square submatrix Â of A by eliminating rt −
∑r

l=1 kl − (n − t) rows. The main aim

of the row elimination is removing rows having subindices in I from each block of Â. We

fix I = {n − t + 1, n − t + 2, . . . , n} and do some row elimination according to I. But, similar

elimination can be designed for different I.

Firstly, we remove last t − kl rows from the l-th block if (r + 1 − l)t −
∑r

i=l kl is less than

rt −
∑r

l=1 kl − (n − t) for l = r, r − 1, r − 2, . . . , c + 2, c + 1, and next, we remove rt −
∑r

l=1 kl −

(n − t) − ((r − c)t −
∑r

i=c+1 kl) rows from the c-th block for some 1 ≤ c ≤ r. Therefore, we

totally removed rt −
∑r

l=1 kl − (n − t) rows which is the difference of the number of rows and

columns of A. Thus, Â, which is the row-removed version of A, is a square matrix:

Â =



M̂1 0 . . . 0 −Ê1

0 M̂2 . . . 0 −Ê2
...

...
...

...

0 0 . . . M̂r −Êr


. (3.4)

Now, we observe that Â is nonsingular with high probability. In order to calculate this prob-

ability easily, we do some row rearrangement according to I. The main aim of the row rear-

rangement is reducing each Ml to a square matrix by moving some rows of each block having

subindices in [n]−I to the bottom of Â. We reduce each Ml to a square matrix by the following

rules: Define sl := t − kl for l = 1, 2, . . . , c − 1, sc = t − kl − (rt −
∑r

l=1 kl − (n − t) − ((r − c)t −∑r
i=c+1 kl)) and sl = 0 for l = c + 1, c + 2, . . . , r. We move first s1 rows from the first block

to the bottom of Â, so that M̂1 reduces to M̂∗1 and Ê1 reduces to Ê∗1. Then, we move s2 rows

numbered as s1 + 1, s1 + 2, . . . , s1 + s2 from the second block to the bottom of Â, so that M̂2

reduces to M̂∗2 and Ê2 reduces to Ê∗2. By continuing the same procedure for each block, we

reach to a new matrix:

Â∗ =



M̂∗1 0 . . . 0 −Ê∗1

0 M̂∗2 . . . 0 −Ê∗2
...

...
...

...

0 0 . . . M̂∗r −Ê∗r

V1 V2 . . . Vr M


We know that Â is nonsingular if and only if Â∗ is nonsingular. Hence, we first show that

detÂ∗ is a non zero polynomial. Then, we obtain a probability for nonsingularity of Â∗.

12

We consider detÂ∗ as a multivariate polynomial of the variables yi,l and a j,l for i ∈ [n] − I,

l ∈ [r] where a j,l are coefficients of the polynomials pl for l ∈ [r]. Hence, detÂ∗ is a non zero

polynomial if it is nonzero for some assigned values of the variables.

Define S l−1 :=
∑l−1

j=0 s j and assign yi,l = 0 for all l ∈ [r] and i ∈ {S l−1 + 1, . . . , S l−1 + sl} so that

M is a zero matrix.

Next, we assign pl(x) = 1 for l ∈ [r], and yi,l = 1 for i ∈ [n] − I − {S l−1 + 1, . . . , S l−1 + sl} and

l ∈ [r] so that the remaining yi,l = 1. This reduces Êl
∗ to

Êl
∗

=



1 z1 . . . zn−t
1

...
...

1 zS l−1 . . . zn−t−1
S l−1

1 zS l+1 . . . zn−t−1
S l+1

...
...

...

1 zn−t+kl . . . zn−t−1
n−t+kl


Then, we row-reduce all rows of Vl with M̂∗l for l ∈ [r]. This is possible since M̂∗l is a Vander-

monde matrix i.e. a full rank matrix. Moreover, it is easy to observe that while eliminating

rows of V1, . . . ,Vr, submatrix M is transformed to

M′ =



1 z1 z2
1 . . . zn−t−1

1

1 z2 z2
2 . . . zn−t−1

2
...

...
...

...

1 zn−t z2
n−t . . . zn−t−1

n−t


After row reduction, Â∗ transforms to

A′ =



M′1 0 . . . 0 −E′1

0 M′2 . . . 0 −E′2
...

...
...

...

0 0 . . . M′r −E′r

0 0 . . . 0 M′


Since A′ is a triangular matrix with nonsingular diagonal block matrices, its determinant is

nonzero, which implies that detÂ∗ is a nonzero polynomial.

When detÂ∗ is expanded, it is observed that it has combined degree n − t. By Schwarz’s

Lemma, the probability that detÂ∗ takes zero values is deg(detÂ∗)/|F| = (n− t)/|F|. Therefore,

we proved the theorem. �

13

Theorem 3.1.2 does not say anything about the existence of a solution of the system (3.1).

However, we know that error locator polynomial E(x) and message polynomials m1(x),m2(x),

. . . ,mr(x) satisfy (3.1). Therefore, the system (3.1) has a unique solution and this solution can

be found by solving the linear system corresponding to A if it is full rank.

Proposition 3.1.3 If t ≥
⌈

n+min{k1,...,kr}
2

⌉
, then Algorithm 3 always returns the solution of the

instance.

Proof. Assume that k1 = min{k1, . . . , kr}. Then, let t ≥
⌈

n+k1
2

⌉
and consider the following

matrix

[M1|E1] =



1 z1 . . . zn−t+k1−1
1

...
...

...

1 zn−t+k1 . . . zn−t+k1−1
n−t+k1

y1,1 . . . y1,1zn−t−1
1

...
...

yn−t+k1,1 . . . yn−t+k1,1zn−t−1
n−t+k1

1 zn−t+k1+1 . . . zn−t+k1−1
n−t+k1+1

...
...

...

1 zt . . . zn−t+k1−1
t

1 zt+1 . . . zn−t+k1−1
t+1

...
...

...

1 zn . . . zn−t+k1−1
n

yn−t+k1+1,1 . . . yn−t+k1+1,1zn−t−1
n−t+k1+1

...
...

yt,1 . . . yt,1zn−t−1
t

yt+1,1 . . . yt+1,1zn−t−1
t+1

...
...

yn,1 . . . yn,1zn−t−1
n


We also assume that I = {1, 2, . . . , n}, then it is known that yi,1z j = p(zi)z j for i ∈ I and

j = 0, . . . , n− t − 1. Thus, the matrix constructed above is column equivalent to the following

full rank matrix.

1 z1 . . . zn−t+k1−1
1

...
...

...

1 zn−t+k1 . . . zn−t+k1−1
n−t+k1

0

1 zn−t+k1+1 . . . zn−t+k1−1
n−t+k1+1

...
...

...

1 zt . . . zn−t+k1−1
t

1 zt+1 . . . zn−t+k1−1
t+1

...
...

...

1 zn . . . zn−t+k1−1
n

0 . . . 0
...

...

0 . . . 0

yt+1,1 + p(zt+1) . . . (yt+1,1 + p(zt+1))zn−t−1
t+1

...
...

yn,1 + p(zn) . . . (yn,1 + p(zn))zn−t−1
n


14

This shows that [M1|E1] is a full rank matrix. Similarly, this is true for any I. Therefore, A

is a full rank matrix, and (3.1) has at most one solution, but we know that (3.1) has a unique

solution and this solution can be found by solving the linear system when A is a full rank

matrix. �

We need to point out the time complexity of the Algorithm 3. Most time consuming operation

through the algorithm is solving the linear system corresponding to A, whose dimension is

at most nr × nr. Hence, time complexity of the algorithm is at most O((nr)3) with Gaussian

elimination method. Therefore, we conclude the following result by combining Theorem

3.1.2 and Proposition 3.1.3.

Theorem 3.1.4 Assuming the SPR instance is random, Algorithm 3 returns the solution of

the instance with probability at least 1 − (n − t)/|F| for t values satisfying max{k1, . . . , kr,⌈
n+

∑r
j=1 k j

r+1

⌉
} ≤ t <

⌈
n+min{k1,...,kr}

2

⌉
with time complexity at most O((nr)3). And, Algorithm 3

never fails for t values satisfying
⌈

n+min{k1,...,kr}
2

⌉
≤ t ≤ n.

Apart from Algorithm 3, BKY algorithm first defines a square matrix Â with row elimination

from the end of each block of A without regarding I, then solves the eliminated linear system

if Â is nonsingular. Â in BKY algorithm is defined as (3.4). We observe that the probability

that Â is nonsingular decreases with a high ratio when row elimination effects all blocks of Â

in BKY algorithm.

Proposition 3.1.5 If E1 has any row that is eliminated and consists of y1i for some i ∈ [n]− I,

then Â is never full rank. Moreover, the probability of BKY Algorithm decreases with ratio

approximately (n−x1
n−t)

(n
n−t)

where x1 = 2t − k1 − n is the number of eliminated rows from the first

block.

Proof. We first observe that if E1 has an eliminated row, then rt−
∑r

l=1 kl − (n− t) > (r− 1)t−∑r
l=2 kl, i.e. t > n+k1

2 .

Then, let [M1|E1] be given as follows

[M1|E1] =


1 z1 . . . zn−t+k1−1

1
...

...
...

1 zn . . . zn−t+k1−1
n

y1,1 . . . y1,1zn−t−1
1

...
...

yn,1 . . . yn,1zn−t−1
n


15

We assume that disagreement occurs at {t + 1, t + 2, . . . , n} and that the last row is eliminated.

The proof can be generalized for other cases easily.

Now, row eliminated matrix
[
M̂1|Ê1

]
column reduces to

1 z1 . . . zn−t+k1−1
1

...
...

...

1 zt . . . zn−t+k1−1
t

1 zt+1 . . . zn−t+k1−1
t+1

...
...

...

1 zn−1 . . . zn−t+k1−1
n−1

0 . . . 0
...

...

0 . . . 0

yt+1,1 + p(zt+1) . . . (yt+1,1 + p(zt+1))zn−t−1
t+1

...
...

yn−1,1 + p(zn−1) . . . (yn−1,1 + p(zn−1))zn−t−1
n−1


since we know that yi,1z j = p(zi)z j for i = 1, . . . , t and j = 0, . . . , n − t − 1. The row

< 1, zt, . . . , z
n−t+k1−1
t > in M1 is row dependent by first t − 1 rows since n − t + k1 <

n+k1
2 < t.

Thus, we observed that Â is equivalent to a matrix having a zero row. We conclude that det(Â)

is zero. Therefore, we proved the first part of the theorem. To prove the second part, we

calculate the ratio of instances not satisfying the first part of the theorem. This is equivalent

to (n−x1
n−t)

(n
n−t)

where x1 is the number of eliminated rows from first block. �

However, probability decrease given in Proposition 3.1.5 occurs if one chooses t > n+k1
2 , in

which interval non-probabilistic algorithms are valid, e.g Berlekamp-Welch algorithm [1].

This case would also be valid in the heterogeneous case if we eliminated some rows from A in

Algorithm 3. We simulate this case with an example in the following pages. We also remark

that the linear system (3.1) is never inconsistent without row elimination since there exists a

solution of the system. Furthermore, failure probability of Algorithm 3 is less than the failure

probability of the algorithm having row elimination step when any elimination occurs, i.e.

when t ,
n+

∑r
j=1 k j

r+1 .

To verify the results presented in Theorem 3.1.4, we compare them with the failure proba-

bilities obtained by Monte-Carlo simulations. In the simulations, we first generate random

message polynomials. Then, corresponding codewords are obtained by the evaluations of

message polynomials in distinct n field elements. Next, n− t random places of the codewords

are replaced with random field elements. Finally, these codewords with erroneous values are

given as an input to the Algorithm 3. Simulation returns a failure if Algorithm 3 is failed.

If Algorithm 3 returns a result equivalent to actual message values, then simulation returns a

success. We simulated Algorithm 3 for n = 15, r = 2, k = [2, 3], |F| = 24 with creating 107

16

Table 3.1: Simulated Failure Probability for the SPR problem n = 15, k = [2, 3], |F| =

24, total trial = 107

t n−t
|F| Algorithm 3 Algorithm 3′ 1 − (n−x1

n−t)
(n

n−t)
(1 − n−t

|F|)

7 5 · 10−1 3, 91 · 10−4 6, 20 · 10−2 5, 00 · 10−1

8 4, 37 · 10−1 9, 00 · 10−7 6, 12 · 10−2 4, 37 · 10−1

9 3, 75 · 10−1 < 10−7 3, 99 · 10−1 6, 25 · 10−1

10 3, 12 · 10−1 < 10−7 7, 37 · 10−1 8, 18 · 10−1

11 2, 50 · 10−1 < 10−7 8, 46 · 10−1 8, 85 · 10−1

12 1, 87 · 10−1 < 10−7 8, 77 · 10−1 9, 00 · 10−1

13 1, 25 · 10−1 < 10−7 8, 55 · 10−1 8, 77 · 10−1

14 6, 25 · 10−2 < 10−7 7, 34 · 10−1 7, 50 · 10−1

random error vectors of weight n − t for t = 7, 8, 9, . . . , 14. This is presented in Table 3.1.

Simulation results show that number of failures decreases with increasing t values and they

are zero for t ≥ 9 as obtained in Theorem 3.1.4. Table 3.1 also indicates that the upper bound
n−t
|F| given in Theorem 3.1.4 is a weak estimate compared to experimental results.

To verify results in Proposition 3.1.5, we first define a new algorithm called Algorithm 3′

which performs some row elimination from A as given in (3.4) then solves the corresponding

system and returns the solution if it is nonsingular, otherwise returns a failure. We simulated

Algorithm 3′ for n = 14, r = 2, k = [2, 3], |F| = 24 with creating 107 random error vectors of

weight n − t for t = 7, 8, 9, . . . , 14. Simulation results of Algorithm 3′ are also presented in

Table 3.1. These results show that failure probability of Algorithm 3′ does not decrease with

increasing t values. In fact, for values t ≥ 9 there is a big increase in failure probabilities, and

these are very near to the bound mentioned in Proposition 3.1.5.

We further simulated BKY algorithm [2] and Algorithm 3 for n = 15, r = 2, k = [4, 4], |F| = 24

with creating 107 random error vectors of weight n − t for t = 8, 9, . . . , 14. This is presented

in Table 3.2. In this case, BKY algorithm is equivalent to Algorithm 3′. The results show

that failure probability of BKY algorithm does not decrease with increasing t values. In fact,

for values t ≥ 10 there is a big increase in failure probabilities, and these are very near to the

bound mentioned in Proposition 3.1.5. Table 3.2 also indicates that Algorithm 3 has better

decoding failure probabilities than BKY algorithm.

17

Table 3.2: Simulated Failure Probability for the SPR problem n = 15, k = [4, 4], |F| =

24, total trial = 107

t n−t
|F| Algorithm 3 BKY algorithm [2] 1 − (n−x1

n−t)
(n

n−t)
(1 − n−t

|F|)

8 4, 37 · 10−1 9, 79 · 10−4 6, 17 · 10−2 4, 37 · 10−1

9 3, 75 · 10−1 7, 00 · 10−7 6, 33 · 10−2 3, 75 · 10−1

10 3, 12 · 10−1 < 10−7 3, 32 · 10−1 5, 41 · 10−1

11 2, 50 · 10−1 < 10−7 6, 35 · 10−1 7, 28 · 10−1

12 1, 87 · 10−1 < 10−7 7, 36 · 10−1 7, 85 · 10−1

13 1, 25 · 10−1 < 10−7 7, 33 · 10−1 7, 66 · 10−1

14 6, 25 · 10−2 < 10−7 6, 00 · 10−1 6, 25 · 10−1

3.2 Decoding Heterogeneous Interleaved Reed-Solomon Codes

We begin with the definition of heterogeneous interleaved Reed-Solomon (IRS) codes.

Definition 3.2.1 Let z1, . . . , zn ∈ F be pairwise distinct and Cl = RS(n, kl) = {(pl(z1), . . .,

pl(zn))T |pl(x) ∈ F[x] of degree less than kl}, l = 1, . . . , r be r Reed-Solomon codes of length n

over F. Then, an interleaved Reed-Solomon code C = IRS(n; k1, . . . , kr) is the set of matrices

C = {(c1, c2, . . . , cr) , cl = (cl,1, . . . , cl,n)T ∈ Cl, l = 1, . . . , r}.

Schmidt, Sidorenko and Bossert [32] present a probabilistic algorithm using Berlekamp-

Massey approach to decode heterogeneous IRS codes for burst errors, i.e. for errors occurring

at the same place of the subcodes simultaneously. In this section, we use probabilistic solu-

tion of SPR problem based on Berlekamp-Welch approach presented in the previous section

which also decodes IRS codes for burst errors.

IRS Decoder:

Parameters: n, k1, . . . , kr, t ∈ N and distinct z1, . . . , zn ∈ F satisfying

max{k1, k2, . . . , kr,
⌈

n+
∑r

j=1 k j

r+1

⌉
} ≤ t ≤ n ≤ |F|.

Input: the received codeword
〈
ci,1, . . . , ci,r

〉n
i=1

Assumption: messages and error values are random.

Algorithm: Algorithm 3 with input
〈
ci,1, . . . , ci,r

〉n
i=1, n, k1, . . . , kr and z1, . . . , zn ∈ F, and by

trying t from max{k1, k2, . . . , kr,
⌈

n+
∑r

j=1 k j

r+1

⌉
} to n until simulating on the correct one decodes

IRS(n; k1, . . . , kr) code probabilistically having at most n − t burst errors.

18

Theorem 3.2.2 Assume that messages and error values are random.

i. Interleaved Reed-Solomon codes IRS(n; k1, . . . , kr) over F satisfyingn +
∑r

j=1 k j

r + 1

 ≥ max{k1, k2, . . . , kr}

and having rate R =
∑r

l=1 kl

nr can be corrected with the IRS Decoder up to burst error rate

ε, where

ε <
r

r + 1
(1 − R) (3.5)

with probability at least 1 − r
r+1

(1−R)n
|F| .

ii. Interleaved Reed-Solomon codes IRS(n; k1, . . . , kr) over F satisfyingn +
∑r

j=1 k j

r + 1

 < max{k1, k2, . . . , kr}

with Rmax = max{k1, k2, . . . , kr}/n can be corrected with the IRS Decoder up to burst

error rate ε, where

ε ≤ (1 − Rmax) (3.6)

with probability at least 1 − (1−Rmax)n
|F| .

Complexity of the IRS Decoder is at most O(n(nr)3) field operations.

Proof. For the first part of the theorem, we observe that

εn = n − t < n −
n +

∑r
l=1 kl

r + 1
= n

r
r + 1

(1 − R)

and

n − t
|F|

< n
r

r + 1
(1 − R)
|F|

.

For the second part, we similarly observe that

εn = n − t ≤ n −max{k1, k2, . . . , kr} = n(1 − Rmax)

and

n − t
|F|
≤

(1 − Rmax)n
|F|

.

Hence, theorem directly follows from Theorem 3.1.4. �

19

Remark 3.2.3 We need to remark some cases that are possible during the IRS decoder. Let

weight of an error vector be n − a0. Then, the corresponding linear system has never full

rank for t < a0. We proved that the system does not have full rank for t = a0 with a low

probability. Assume that the system does not have full rank for a0. Then, the linear system

may be full rank for some t > a0 but it is easy to see that the linear system can never be

consistent. In theoretical calculation of the failure probability, we count all these cases as

failure in the worst case. If one uses Algorithm 3′ in IRS decoder, then in the case that the

corresponding linear system does not have full rank for a0, the linear system may be full rank

for some t > a0 but ml may not be divisible by pl for some l ∈ [r] or the linear system may be

full rank for some t > a0 and ml may be divisible by pl for all l ∈ [r] but p̂l may be different

than pl for some l ∈ [r]. Also, it is possible that at the end it may be the case that p̂l = pl for

all l ∈ [r]. Therefore, it is possible to get decoding error when Algorithm 3′ is used in IRS

decoder instead of Algorithm 3.

In this section, we generally consider the IRS(n; k1, . . . , kr) codes over F satisfying
⌈

n+
∑r

j=1 k j

r+1

⌉
≥ max{k1, k2, . . . , kr}. In this case, one can decode IRS codes using IRS decoder for any error

rate arbitrarily close to the bound 1 − R with Algorithm 3 for a given R and for a desired

failure probability at most η as follows: first choose ε < 1 − R and choose r so that (3.5) is

satisfied, that is choose r ≥
⌈

ε
1−R−ε

⌉
. Then select F and n < η|F|(r+1)

(1−R)r such that nR is an integer

so that the failure probability of Theorem 3.2.2 becomes at most η and random selection of

k1, . . . , kr ≤

⌈
n+

∑r
j=1 k j

r+1

⌉
satisfying R =

∑r
l=1 kl

nr is possible.

Now, we give some examples presenting the results obtained in Theorem 3.2.2. In addition,

we present experimental results which are obtained by simulating the corresponding exam-

ples. These results are also compared in Table 3.3.

Example 3.2.4 IRS Decoder decodes IRS(15; 6, 5, 4) code over F24 with failure probability at

most η = 4, 375 · 10−1 up to 7 errors where rate is R = 1
3 . If we were over F210 , then we would

reach to same error correction capability with the failure probability at most 6, 8·10−3. On the

other hand, it is experimentally obtained that failure probability of decoding IRS(15; 6, 5, 4)

code over F24 for at most 7 errors is approximately 2, 61 · 10−3.

Example 3.2.5 IRS Decoder decodes homogeneous IRS(255; 223, 223, 233) code over F28

with failure probability at most η = 9, 375 · 10−2 up to 24 errors. On the other hand, it

20

is experimentally obtained that failure probability of decoding IRS(255; 223, 223, 223) code

over F28 for at most 24 errors is approximately 3, 70 · 10−3.

Example 3.2.6 One can decode for errors close to bound 1 − R with Algorithm 3 for a given

R = 0, 7 and for a desired fail probability at most η = 10−3 as follows: first choose ε = 0, 2

and choose r =
⌈

ε
1−R−ε

⌉
= 2. Then select F = F212 and n = 20 <

η|F|(r+1)
(1−R)r . Finally, choose

randomly k1 = 13, k2 = 15 ≤ 16 satisfying R =
∑r

l=1 kl

nr . In other words, IRS(20; 13, 15)

over F212 can be decoded up to 4 errors for a failure probability at most 10−3. Experimental

results show that IRS(20; 13, 15) code over F212 for at most 4 errors is decoded with a failure

probability approximately 2, 35 · 10−4

Remark 3.2.7 Experimental results given in the above examples are obtained by simulating

IRS Decoder for 107 random message polynomials with random errors in the random places.

All errors in the experimental results have the most possible weight in order to compare

efficiently with theoretical results and to calculate the worst case probability. For instance,

all errors have weight 7 for IRS(15; 6, 5, 4) code during the simulation. On the other hand, we

obtain that failure probability decreases when errors have random weight. For instance, the

failure probability of decoding IRS(15; 6, 5, 4) code defined over F24 decreases to 3, 3 · 10−5 if

errors have weight between 0 and 7 randomly.

Comparison of results of decoding IRS(n; k1, k2, . . . , kr) codes over F up to n − t burst errors

with an estimated failure probability η = n−t
|F| according to Theorem 3.2.2 and experimental

failure probability P f of IRS decoder based on Algorithm 3 is presented in Table 3.3.

Table 3.3: Simulated Failure Probability for Interleaved Reed-Solomon Codes

Code |F| n − t η P f

IRS(15; 6, 5, 4) 24 7 4, 375 · 10−1 2, 61 · 10−3

IRS(15; 6, 5, 4) 210 7 6, 8 · 10−3 < 10−7

IRS(255; 223, 223, 223) 28 24 9, 375 · 10−2 3, 70 · 10−3

IRS(20; 13, 15) 212 4 10−3 2, 35 · 10−4

In Section 3.3 and Section 5.2, we will use the decoder of heterogeneous IRS codes presented

in this section for decoding RS codes and folded Hermitian codes, respectively.

21

3.3 Decoding RS Codes with Heterogeneous IRS Decoder

Schmidt, Sidorenko and Bossert [31] observed that decoding RS codes by using decoding

heterogeneous IRS codes is possible. In this section, we start with this observation, and then

we apply the IRS decoder presented in Section 3.2 for decoding RS codes.

Let p(x) = p0 + p1x+· · ·+ pn−1xn−1 be a polynomial over F. Denote by p<i>(x) the polynomial

p<i>(x) = pi
0 + pi

1x + · · · + pi
n−1xn−1. Consider the RS Code C = RS(n; k) over F, and define

the codes

C<i> = {c<i>(x) : c(x) ∈ C}, i = 1, . . . , r.

Lemma 3.3.1 [31] If i(k − 1) + 1 ≤ n, then C<i> ⊂ Ci, where Ci = RS(n; i(k − 1) + 1) is a

Reed-Solomon code of dimension i(k − 1) + 1 over F.

Now we select an integer r, such that r(k − 1) + 1 ≤ n. For every codeword c(x) ∈ C, we

create r codewords c<i>(x) ∈ Ci, and the corresponding vectors c<i> = (ci
0, c

i
1, . . . , c

i
n−1) for

i = 1, . . . , r. From these vectors, we create the matrix

c =



c<1>

c<2>

...

c<r>



T

=



c0 c1 . . . cn−1

c2
0 c2

1 . . . c2
n−1

...
...

...

cr
0 cr

1 . . . cr
n−1



T

.

This matrix can be considered as a codeword of an IRS code, obtained by interleaving the

codes C1, . . . ,Cr with varying redundancy.

Now, assume that we transmit c(x) ∈ C over a channel, and observe the corrupted word

y(x) = c(x)+e(x) at the channel output. From this received word, we calculate the polynomials

y<i>(x) = yi
0 + yi

1x + · · · + yi
n−1xn−1, i = 1, . . . , r, where

yi
j = (c j + e j)i = ci

j + e[i]
j .

We observe that if e j = 0, then e[i]
j = 0 for all i. From this we conclude that the locations of

the erroneous symbols in y(x) are not modified by raising the coefficients to the i-th power.

Therefore, we observed that errors of c are burst errors. Hence, one can decode RS codes by

using the heterogeneous IRS Decoder given in the previous section.

22

If the IRS Decoder is applied to decode RS codes, then one gets a probabilistic decoding

algorithm with the result:

Theorem 3.3.2 Assume that messages and error values are random. Reed-Solomon codes

RS(n; k) over F can be corrected up to error rate ε, where

ε <
r

r + 1
(1 − R) (3.7)

with probability at least 1 − r
r+1

(1−R)n
|F| for parameters r satisfying

r ≤

√2
n − 1
k − 1

+
1
4
−

1
2


and R =

(k−1)(r+1)+2
2n . Moreover, RS(n; k) over F can be corrected up to error rate ε, where

ε ≤ 1 −
r(k − 1) + 1

n
(3.8)

with probability at least 1 − n−r(k−1)−1
|F| for r values satisfying√2

n − 1
k − 1

+
1
4
−

1
2

 < r ≤
⌊
n − 1
k − 1

⌋
. (3.9)

Complexity of the decoding procedure is at most O(n(nr)3) field operations.

Proof. We first calculate the rate of the interleaved code IRS(n; k, 2(k−1)+1, . . . , r(k−1)+1)

reduced from RS(n; k) as follows

R =

∑r
l=1 (l(k − 1) + 1)

nr
=

(k − 1)(r + 1) + 2
2n

.

Then, we compare the maximum dimension

max{k, 2(k − 1) + 1, . . . , r(k − 1) + 1} = r(k − 1) + 1 (3.10)

with the integer ⌈
n +

∑r
i=1(i(k − 1) + 1)

r + 1

⌉
. (3.11)

We observe that (3.11) is greater than (3.10) for r ≤
⌊√

2 n−1
k−1 + 1

4 −
1
2

⌋
. Therefore, first part of

the theorem is a consequence of Lemma 3.3.1 and Theorem 3.2.2.(i).

According to Lemma 3.3.1, we can also choose r between
⌊√

2 n−1
k−1 + 1

4 −
1
2

⌋
and

⌊
n−1
k−1

⌋
in

which case even RS codes can be reduced to IRS codes. In this case, (3.10) is greater than

23

(3.11). Thus, Theorem 3.2.2.(ii) implies that IRS decoder corrects RS(n,k) codes up to error

rate n−r(k−1)−1
n with probability at least 1 − n−r(k−1)−1

|F| . And, this proves the later part of the

theorem. �

Now, we compare decoding radii (3.7) and (3.8) with the radius of bounded minimum distance

(BMD) decoders such as Berlekamp-Welch algorithm [1]. Radius of a BMD decoder is equal

to

(1 − R)/2. (3.12)

Proposition 3.3.3 For a given interleaving parameter r, decoding radius (3.7) is better than

radius (1 − R)/2 for RS codes having rates R ≤ 1/
(
r+1

2

)
.

Proof. (3.7) is better than (1 − R)/2 if

r
r + 1

(1 −
(k − 1)(r + 1) + 2

2n
) >

1
2

(1 −
k
n

)

is satisfied. So, r satisfies

(k − 1)r2 − (n − 1)r + (n − k) < 0

that is

r ∈ (1,
n − k
k − 1

).

On the other hand, we observe that√2
n − 1
k − 1

+
1
4
−

1
2

 ≤ ⌊
n − k
k − 1

⌋
for all n and k ≤ n. Hence, we have a better decoding radius than (3.12) for each r satisfying

r ≤

√2
n − 1
k − 1

+
1
4
−

1
2

 .
This implies that the rate of RS code is required to satisfy

R ≤
2k

(k − 1)(r2 + r) + 2

for a given r, or in the worst case we say that R ≤ 1/
(
r+1

2

)
. �

For instance, for r = 2:

2
2 + 1

(1 −
(k − 1)(2 + 1) + 2

2n
) =

2
3
−

k
n

+
1
3n

24

is better than

1
2
−

k
2n

for rates at most 1
3 .

Similarly, for r = 3 we have better decoding radius than (3.12) if the rate is at most 1
6 , and for

r = 4 if rate is at most 1
10 .

Proposition 3.3.4 For a given interleaving parameter r, decoding radius (3.8) is better than

radius (1 − R)/2 for RS codes having rates 1/
(
r+1

2

)
≤ R ≤ 1/(2r − 1).

Proof. (3.8) is better than (1 − R)/2 if

(1 −
r(k − 1) + 1

n
) >

1
2

(1 −
k
n

)

is satisfied. So, r satisfies

r <
n + k − 2
2(k − 1)

.

Thus, for a given r, rate of the code is required to satisfy

r <
1 + R − 2

n

2(R − 1)

or equivalently, R ≤ 1/(2r − 1). On the other hand, we know that r is also required to satisfy

r ≥

√2
n − 1
k − 1

+
1
4
−

1
2

 .
Then, by Proposition 3.3.3 rate is to be at least 1/

(
r+1

2

)
. Therefore, 1/

(
r+1

2

)
≤ R ≤ 1/(2r − 1).

As a final step, it is easy to check that
⌊

n+k−2
2(k−1)

⌋
is in the range (3.9). This ends proof of the

theorem. �

For instance, for r = 2:

1 −
2(k − 1) + 1

n

is better than

1
2
−

k
2n

for rates at most 1
3 .

25

Similarly, for r = 3 we have better decoding radius than (3.12) if rate is at most 1
5 , and for

r = 4 if rate is at most 1
7 .

Now, we consider the case r ≤
⌊√

2 n−1
k−1 + 1

4 −
1
2

⌋
, and observe some results. Similar observa-

tions can be done for other r values.

A given RS(n; k) code over F can be corrected better than bounded minimum distance de-

coder with the decoder based on Algorithm 3. To maximize the difference choose r =[
1−k+

√
2
√

1−k−n+kn
−1+k

]
which is the positive zero of derivative of the function defined as the dif-

ference of radius (3.7) and unique decoding radius, then errors up to rate ε ≤ r
r+1 (1 − R) can

be corrected with probability at least 1 − r
r+1

(1−R)n
|F| where R =

(k−1)(r+1)+2
2n .

On the other hand, one can decode RS codes with Algorithm 3 for a given rate β and fail

probability at most η as follows: first choose r satisfying β ≤ 1
(r+1

2) and set R =
β(r+1)

2 . Next,

choose error rate ε as ε ≤ r
r+1 (1−R). Then, choose F and n < η|F|(r+1)

(1−R)r such that nβ is an integer

so that fail probability is at most η and dimension of the Reed-Solomon code is meaningful.

To support results obtained in this section, an example with experimental results observed by

simulating IRS decoder for RS codes is given below. These results are also compared in Table

3.4.

Example 3.3.5 IRS Decoder decodes RS(31; 6) code over F28 with failure probability at most

η = 5, 86 ·10−2 up to error rate ε ≤ 15/31 by choosing r = 2. If we were over F25 , then failure

probability increases to 4, 688 · 10−1. However, experimentally we obtained that RS(31; 6)

over F25 is decoded for up to 15 errors with failure probability approximately 3, 08 · 10−2.

Similarly, experimental results show that RS(31; 4) over F25 is decoded for up to 18 errors

with failure probability approximately 3, 20 · 10−2. These experimental results are very near

to ones given in [31]. On the other hand, for a given rate β = 1/5 and failure probability at

most 10−2, IRS Decoder decodes for any error rate ε ≤ 9/20 by choosing r = 2, F = F210 and

n = 20. In other words, RS(20; 4) over F210 can be decoded for at most 9 errors with failure

probability at most 10−2. However, experimental results show that it is less than 10−7.

Comparison of results of decoding RS(n; k) over F up to n − t errors with an estimated failure

probability η ≈ n−t
|F| according to Theorem 3.3.2 and experimental failure probability P f of RS

decoder based on Algorithm 3 is presented in Table 3.4. Experimental results are obtained

26

by simulating IRS Decoder for 107 random message polynomials with random errors in the

random places. All errors in the simulation results have the most possible weight in order to

compare efficiently with theoretical results and to observe the worst case probability. Capa-

bility of number of errors corrected by bounded minimum distance (BMD) decoders are also

presented in Table 3.4. We note that BMD decoders are capable of decoding RS(n; k) code

for all error patterns up to weight
⌊

n−k
2

⌋
.

Table 3.4: Simulated Failure Probability for Reed-Solomon Codes

Code |F| n − t
⌊

n−k
2

⌋
η P f

RS(31; 6) 25 15 12 4, 688 · 10−1 3, 08 · 10−2

RS(31; 6) 28 15 12 5, 86 · 10−2 3, 92 · 10−3

RS(31; 4) 25 18 13 5, 625 · 10−1 3, 20 · 10−2

RS(31; 4) 28 18 13 7, 03 · 10−2 3, 97 · 10−3

RS(20; 4) 210 9 8 8, 8 · 10−3 < 10−7

27

CHAPTER 4

LIST DECODING INTERLEAVED CODES

A list-decoding algorithm is an algorithm which tries to construct a list which includes code-

words within a specified radius of an input codeword. The central problem of list decoding is

to identify the radius up to which a list decoding algorithm exists in terms of the output list

size and efficiency of the algorithm.

List decoding was first introduced by Elias [6] and Wozencraft [37]. In [35], Sudan proposed

first non-exponential time list-decoding algorithm for Reed-Solomon (RS) codes. The list-

decoding algorithm in [35] works only for codes of low rates. Guruswami and Sudan [11]

later proposed improved list-decoding algorithm (GS algorithm) for RS-codes. The algorithm

of Guruswami and Sudan has the largest list decoding radius for RS-codes up to date, and are

applicable to codes of any rates.

Recently, by specializing the ideas of Pararesh and Vardy [20] of construction of correlated

RS-codes, Guruswami and Rudra [12] constructed folded RS-codes, which are obtained as

folding each b symbols of RS-code together representing these consecutive b symbols as

a new symbol. Guruswami and Rudra showed that folded RS-codes achieve the informa-

tion theoretically best possible trade off between the rate and error-correction radius. They

presented a list decoding algorithm (GR algorithm) for folded RS-codes that decodes up to

information theoretically best possible radius (called capacity) and runs in polynomial time,

and also outputs a list of codewords whose size is also polynomial.

It is known that folded RS-codes are subcodes of interleaved RS-codes, and there is also a

study on interleaved RS-codes. Gopalan et al.[8] showed that homogeneous interleaved codes

(possibly nonlinear) can be list decodable up to radius what subcode can be. In particular, this

implies that interleaved folded RS-codes can also be list decodable up to the information

28

theoretically best possible radius. Moreover, they presented an efficient algorithm for list

decoding interleaved codes.

In this chapter, we will continue in this direction, and we show that heterogeneous interleaved

codes, whose minimum distances would be distinct, can be list decodable up to radius of

minimum of list decoding radii of subcodes in Section 4.2.

4.1 Previous Results

Guruswami and Sudan [11] presented a list decoding algorithm for RS-codes with the follow-

ing result. See also Corollary 4.9 in [14].

Theorem 4.1.1 [11] For every 0 < ε, a Reed-Solomon code of rate R and length n can be list

decoded in polynomial time O(n3) up to a fraction 1 −
√

(1 + ε)R of errors using lists of size

O(ε−1/
√

R).

Later, Guruswami and Rudra [12] constructed folded Reed-Solomon codes having the follow-

ing result.

Theorem 4.1.2 [12] For every 0 < ε and 0 < R < 1, there is a family of folded Reed-Solomon

codes that have rate at least R and which can be list decoded up to a fraction 1−R−ε of errors

in time (and outputs a list of size at most) (N/ε2)O(ε−1log2(1/R)) where N is the block length of

the code. The alphabet size of the code as a function of the block length N is (N/ε2)O(1/ε2) and

the folding parameter of the code is approximately O(1/ε2).

For interleaved codes, Gopalan et al.[8] obtained the following result.

Theorem 4.1.3 [8] Let C be interleaving of b-wise c of length n having minimum distance δ.

For η < δ, let l(η) be the list size of c when list decoded up to radius η with time complexity

T . And, let x =
⌈
η
δ−η

⌉
and y =

⌈
log2

δ
δ−η

⌉
. Then C can be list decodable up to radius η with list

size L(η) <
(

x+y
y

)
l(η)y and time complexity at most O(bT + b2nl(η)L(η)).

29

4.2 List Decoding Interleaved Codes

We formally define interleaved codes as follows.

Definition 4.2.1 The interleaving C of the codes C1, . . . ,Cb ⊂ F
n
q consists of n × b matrices

over Fq whose i-th column is a codeword in Ci for i = 1, . . . , b. Each row is treated as a single

symbol, thus C ⊂ Fn
qb .

Throughout the section, Ci ⊂ F
n
q will be arbitrary codes (possibly non-linear) over an alphabet

Fq with relative distance δi for i = 1, . . . , b. And, let C be interleaving of C1, . . . ,Cb. We

will show that ideas of [8] are also applicable if each Ci also has distinct relative distance

(heterogeneous case). But, list decoding radius weakens a little bit. In this section we follow

the proof technique of [8] with little changes.

Let dq(r, c) denote the Hamming distance between strings in Fn
q and ∆q(r, c) = dq(r, c)/n

denote the normalized Hamming distance.

By using algorithms DecodeCi that can list decode Ci up to radius η with a list Li whose size

is li(η) for i = 1, . . . , b , DecodeC given in Algorithm 4 list decodes C up to radius η in time

polynomial in the list-size and b. Thus it is required to bound the list-size. In order to do this,

an inefficient algorithm (Algorithm 5) will be given. Let r≤i = (r1, ..., ri), L≤i direct product

of L1, L2 . . . , Li and l(η) = maxi{li(η)} for i ≤ b.

Proposition 4.2.2 Assume that DecodeCi(ri, η) runs in time Ti for i = 1, 2, . . . , b. Then Al-

gorithm 4:DecodeC(r, η) returns a list of codewords within distance η of r in time at most

O(
∑

i Ti + b2nl(η)L(η)).

Proof. If ∆qb(c, r) ≤ η for any c, then for every i ≤ b, we have ∆qi(c≤i, r≤i) ≤ η, that is,

c≤i ∈ L≤i. Conversely, if c ∈ L≤b, then we have ∆qb(c, r) ≤ η. Therefore, c ∈ L≤b if and only

if ∆qb(c, r) ≤ η, which shows that Algorithm 4 outputs the correct codewords.

Steps 1-3 take time at most O(
∑

i Ti). And, each iteration of the loop in Step 7 requires

computing the distance between r and c at most li(η)L≤i(η) < l(η)L(η) candidates for c. And,

computing the distance takes at most O(bn) operations over Fq. Therefore, Steps 5-9 take at

most O(b2nl(η)L(η)) operations. �

30

Algorithm 4 DecodeC: An Efficient List Decoding Algorithm for C
Require: r = (r1, ..., rb) ∈ (Fn

q)b, η.

Ensure: List of all c ∈ C so that ∆qb(r, c) ≤ η.

1: for i = 1, . . . , b do

2: Set Li = DecodeCi(ri, η).

3: end for

4: Set L≤1 = L1.

5: for i = 2, . . . , b do

6: for c ∈ L≤i−1 × Li do

7: Add c to L≤i if ∆qi(c, r≤i) ≤ η.

8: end for

9: end for

10: return L≤b.

Now, we give Algorithm 5 in the following pages to bound the output list size of the Algorithm

4.

Definition 4.2.3 Given a code C ⊂ Fn
q, erasing the indices corresponding to S ⊂ [n] gives

the code C−S = {c−S : c ∈ C} ⊆ Fn−|S |
q .

Let |S | = µn. We will only consider the case that µ < δ := mini{δi}. It is easy to see that

the code C−S
i has distance d(C−S

i) > (δi − µ)n, and there is a 1-1 correspondence between

codewords in Ci and their projections in C−S
i . For η < 1 − µ, let l−S

i (η) be the maximum

number of codewords of C−S
i that lie in a Hamming ball of radius ηn in (Fb

q)n(1−µ). Then

following result shows the relation between l−S
i and li.

Lemma 4.2.4 For any η < 1 − µ and 1 ≤ i ≤ b , l−S
i (η) ≤ li(η + µ).

Proof.For any received word r−S
i ∈ F

n(1−µ)
q , let c−S

i1 , ..., c
−S
il−S

i (η)
be codewords satisfying d(r−S

i , c−S
i j) ≤

ηn. One can define ri ∈ F
n
q by fixing values of r−S

i at the set S arbitrarily. By the trian-

gle inequality, it is known that d(ri, ci j) ≤ d(r−S
i , c−S

i j) + |S | ≤ ηn + µn, which implies that

li(η + µ) > l−S
i (η). �

Algorithm 5 is a list decoding algorithm having inputs S ∈ [n], ri ∈ F
n
q and an error parameter

ei, and returning all codewords ci ∈ Ci so that d(c−S
i , r−S

i) ≤ ei. This algorithm is not efficient,

31

but it is not important since we only use it for estimating the upper bound of the list size of

Algorithm 4. Let c≤i = (c1, ..., ci). Algorithm 5 erases the set of positions S where c≤i , r≤i

and then runs a list decoder for C−S
i+1 on ri+1.

Algorithm 5 Erase-Decode
Require: r ∈ Fn

qb , η.

Ensure: List L of all c ∈ C so that ∆qb(r, c) ≤ η.

1: Set S 1 = ∅, µ1 = 0.

2: for i = 1, . . . , b do

3: Set Li = List-Decode(S i, ri, (η − µi)n).

4: Choose ci ∈ Li.

5: Set S i+1 = { j ∈ [n] s.t. c≤i[j] , r≤i[j]} and µi+1 = |S i+1|/n.

6: end for

7: return c = (c1, . . . , cb).

During Erase-Decode algorithm, for each c1 ∈ L1 distinct places S 2 of c1 and r1 are removed

from r2 and obtained r−S 2
2 . Then it is list decoded and we obtain L2. The same procedure

is applied for each c2 ∈ L2. At the end, if we reach to the b-th stage on some path, then

the codeword (c1, c2, . . . , cb) of this path is included in L. Each ci ∈ Li leads to a different

path after itself if the list decoding at the next stage produces any output. So the whole

procedure of Erase-Decode can be realized as a tree. As a remark, it is known that there is a

1-1 correspondence between Ci and C−S
i . Thus the size of L gives a bound for the size of list

produced by Algorithm 4.

For a received word r, Tree(r) is a tree with b + 1 levels. The root is at level 0. A node

v at level i is labeled by c(v) = (c1, ..., ci). It is associated with a set S i+1(v) ⊆ [n] of era-

sures accumulated so far which has size µi+1(v)n. The resulting code C−S i+1(v)
i+1 has minimum

distance δi+1(v)n > (δ − µi+1(v))n. List decoding algorithm in Step 3 finds all codewords in

C−S i+1(v)
i+1 that are within distance (η − µi+1(v))n of the modified received word r−S i+1(v)

i+1 , call

this list L(v). By Lemma 4.2.4, L(v) contains at most li+1(η) codewords which is smaller than

l(η) := maxi{li(η)}. Each edge leaving v is labeled by a distinct codeword ci+1 from L(v); it

is assigned a weight w(ci+1) = d(c−S (v)
i+1 , r−S (v)

i+1)/n. The weight w(ci+1) ∈ [0, 1] of an edge

indicates how many new erasures that edge contributes. Thus µi+1(v) = w(c1) + . . . + w(ci).

The leaves at level b correspond to codewords in the list L. There might be no out-edges

from v if the list L(v) is empty. This could result in a leaf node at a level i < b which does

32

not correspond to codewords. Thus the number of leaves in Tree(r) is an upper bound on the

list-size for r.

In order to bound the number of leaves, we assign colors to the various edges based on their

weights. Let ci be an edge leaving the vertex v. We color it White if w(ci) < δ − η, Blue if

w(ci) > δ − η but w(ci) < δi(v)/2, and Red if w(ci) > δi(v)/2. White edges correspond to

codewords that are very close to the received word, Blue edges to codewords that are within

the unique-decoding radius, and Red edges to codewords beyond the unique decoding radius.

We begin by observing that White edges can only occur if the list is of size 1.

Lemma 4.2.5 If a vertex v has a White out-edge, then it has no other out-edges.

Proof.Assume that the edge labeled with ci ∈ L(v) is colored White, so that d(ci, r
−S i(v)
i) <

(δ − η)n. Let c′i be another codeword in L(v), so that d(c′i , r
−S i(v)
i) ≤ (η − µi(v))n. Then by the

triangle inequality,

d(ci, c′i) < (δ − η)n + (η − µi(v))n = (δ − µi(v))n ≤ δi(v)n

But this is a contradiction since d(ci, c′i) > δi(v)n. �

We observe that Blue edges do not cause much branching and cannot result in very deep paths.

Lemma 4.2.6 A vertex can have at most one Blue edge leaving it. A path from the root to a

leaf can have no more than
⌈
η
δ−η

⌉
Blue edges.

Proof.The first part holds as there can be at most one codeword within the unique decoding

radius. After
⌈
η
δ−η

⌉
Blue edges, all ηn errors have been identified, so all remaining edges have

to be White. �

Lastly, we show that Red edges do not give deep paths either.

Lemma 4.2.7 A path from the root to a leaf can have no more than
⌈
log2

δ
δ−η

⌉
Red edges.

Proof. Since w(ci) > δi(v)/2, and the relative distance δi(v) at node v satisfies δi(v) > (δ −

µi(v)), we obtain that every Red edge leaving vertex v has weight at least (δ − µi(v))/2.

33

Assume now for contradiction that some path from the root to a leaf contains k red edges for

k >
⌈
log2

δ
δ−η

⌉
. Suppose that the edges have weights ρ1, ..., ρk, respectively. Contract the Blue

and White edges between successive Red edges into a single edge, whose weight is the sum

of weights of the contracted edges. We also do this for the edges before the first Red edge and

those after the last Red edge. This gives a path containing 2k + 1 edges, where the even edges

are Red, and the weight of the edges along the path are β1, ρ1, β2, ..., ρk, βk+1, respectively.

Let v j be the parent vertex of the j-th Red edge for j ∈ [1, k]. Then we have µ(v1) = β1 and

µ(v j) = β j + ρ j−1 + µ(v j−1) for j > 1. But since ρ j−1 > (δ − µ(v j−1))/2 and β j > 0, we get

µ(v j) >
δ + µ(v j−1)

2
.

Now by induction one obtains µ(v j) ≥ δ(1 − 21− j) for all j ≥ 2. If we take j =
⌈
log2

δ
δ−η

⌉
+ 1,

then

µ(v j) > δ(1 −
δ − η

δ
) = η.

So when we decode at vertex v j, all the error locations have been identified and erased. Hence

we are now decoding from η < δ erasures and no errors, so the decoding is unique and error-

free. So vertex v j will have a single White edge leaving it and no Red edges, which is a

contradiction. �

Theorem 4.2.8 Assume η < δ and let x =
⌈
η
δ−η

⌉
, y =

⌈
log2

δ
δ−η

⌉
. Then Tree(r) has at most(

x+y
y

)
l(η)y leaves (and hence L(η) <

(
x+y

y

)
l(η)y).

Proof. By Lemma 4.2.5, we know that white edges are the only out-edges leaving their parent

nodes, hence they do not contribute to the number of leaves. Thus we eliminate White edges

from the tree. Therefore, it is enough to count the number of leaves of a tree consisting only

of Red and Blue edges. By Lemma 4.2.6 and 4.2.7, each path of this tree has at most x Blue

and y Red edges. Denote this number by t(x, y). We also know that each node of this tree

has at most one Blue edge and l(η) Red edges leaving it. So, t(x, y) satisfies the recursion

t(x, y) ≤ t(x − 1, y) + l(η)t(x, y − 1) with the initial conditions t(a, 0) = 1 for a = 0, 1, 2, . . . , x.

Then, t(x, y) ≤
(

x+y
y

)
l(η)y. �

Hence, by using Proposition 4.2.2 and Theorem 4.2.8, one obtains that result of [8] is appli-

cable to the more general interleaved codes. Specifically, we proved that

34

Theorem 4.2.9 Let C be interleaving of C1, . . . ,Cb of length n and minimum distance δi. Let

δ = miniδi and, for η < δ, l(η) be the maximum of list sizes of C1, . . . ,Cb when list decoded

up to radius η with time complexity Ti. And, let x =
⌈
η
δ−η

⌉
and y =

⌈
log2

δ
δ−η

⌉
. Then C can

be list decodable up to radius η with list size L(η) <
(

x+y
y

)
l(η)y and time complexity at most

O(
∑

i Ti + b2nl(η)L(η)).

In Section 5.3, by using Algorithm 4 and Theorem 4.2.9, we present a new list decoding

algorithm for folded Hermitian codes.

35

CHAPTER 5

DECODING FOLDED HERMITIAN CODES

Hermitian codes are one of the families of Algebraic-geometric (AG). AG codes were first

introduced by Goppa [9]. In 1982, Tsfasman, Vladut and Zink [36] showed the existence of a

sequence of codes that exceeds the Gilbert-Varshamov bound. AG codes are also thought as

a generalization of RS codes. The length of the RS codes is limited by the size of the finite

field, but AG codes enable us to break this limitation, and so to reduce field operations.

Feng and Rao [7] presented an algorithm based on Gaussian elimination which corrects all er-

ror patterns of weight less than half the minimum distance. Later, Sakata, Justesen, Madelung,

Elbrond Jensen and Hoholdt [23, 24, 25] extended the idea of Feng and Rao by using extended

Berlekamp-Massey approach so that all error patterns of weight less than half the minimum

distance were corrected with low complexity.

In 1999, Shokrollahi and Wasserman generalized Sudan’s algorithm [35] and derived a list-

decoding algorithm for AG codes [26]. The list-decoding algorithm in [26] work only for

codes of low rates. Guruswami and Sudan [11] later proposed improved list-decoding algo-

rithm (GS algorithm) for AG codes. The algorithm of Guruswami and Sudan have the largest

list decoding radius for AG codes up to date, and are applicable to codes of any rates.

Guruswami and Rudra [12] constructed folded RS codes that achieve the information theo-

retically best possible trade off between the rate and error-correction radius. They presented

a list decoding algorithm (GR algorithm) for folded RS codes that decodes up to informa-

tion theoretically best possible radius (called capacity) and runs in polynomial time, and also

outputs a list of codewords whose size is also polynomial.

One of the generalization of GR-algorithm would be list decoding AG codes up to capacity.

36

Such a generalization is studied in [13] and [15]. Guruswami [13] explains how capacity

achieving list decoding schemes for RS codes arise out of the Artin-Frobenius automorphism

at primes in Galois extensions. Technically, Guruswami constructs new list-decodable capac-

ity achieving AG codes (called folded AG codes) based on cyclotomic function fields with a

cyclic Galois group.

Huang and Narayanan [15] also consider AG codes constructed from Galois extensions, and

observe how automorphisms of large order can be used for folding such codes.

Main motivations of these works are to gain a deeper understanding of the general algebraic

principles underlying the above folding and extending it to more general AG codes. The latter

is important for potentially improving the alphabet size of the codes, as well as the decoding

complexity and output list size of the decoding algorithm. Huang and Narayanan [15] defined

codes on cyclotomic function fields that do not improve folded Reed Solomon codes in terms

of alphabet size. But, Guruswami [13] overcame this obstacle by considering certain special

subfields of the cyclotomic fields thereby achieving an alphabet size that is logarithmic in the

block length, which is an improvement on folded RS case whose alphabet size is polynomial

in the block length.

In this chapter, decoding of a special family of AG codes called Hermitian code is studied.

Hermitian codes are defined on the function field of Hermitian curve. It is shown in [22] that

decoding Hermitian codes can be reduced to decoding interleaving of heterogeneous Reed-

Solomon codes, which is also presented in Section 5.1. Then, single and list decoders of

heterogeneous IRS codes presented in previous chapters can be applied to decoding Hermitian

codes and list decoding Hermitian codes, which are presented in Section 5.2 and Section 5.3,

respectively.

5.1 Folded Hermitian Codes

A Hermitian curve H(q) over Fq2 in affine coordinates is defined by

H(q) : yq + y = xq+1. (5.1)

There are q3 + 1 rational points on H(q), the q3 points that satisfy (5.1) are denoted by

R1,R2, . . . ,Rn, where n = q3, and the point at infinity will be denoted by Q.

37

The following proposition is from [34], [38].

Proposition 5.1.1 For each m ≥ 0, the following set is a basis of L(mQ)

{xiy j|0 ≤ i, 0 ≤ j ≤ q − 1, iq + j(q + 1) ≤ m}.

Then, Hermitian code is defined as

Hm = C(D,mQ) = {(g(R1), g(R2), . . . , g(Rn))|g ∈ L(mQ)}

where D = R1 + R2 + . . . + Rn with n = q3.

From [38], we know that xq + x = 0 has q solutions in Fq2 . We use B = β1, β2, . . . , βq to denote

the set of solutions to the equation xq + x = 0. Let (1, y0) be a solution to (5.1), then according

to [38],

(η, ηq+1y0 + βi)

are all the q3 rational points on Hermitian curve H(q), where η ∈ Fq2 .

Suppose α is a primitive element in Fq2 , then the q3 rational points on Hermitian curve can be

expressed as

(αi, αi(q+1)y0 + β j)

where i = −∞, 0, 1, 2, . . . , q2 − 2, j = 1, 2, . . . , q, and α−∞ := 0.

Now, we will continue with the decoding of Hermitian code as given in [22], and then we will

apply the IRS Decoder presented in Section 3.2 to obtain a new decoding algorithm for folded

Hermitian codes. In order to describe the decoding algorithm, we first arrange the q3 rational

points as in the following list.

38

P1,1 = (0, β1)

P1,2 = (0, β2)
...

P1,q = (0, βq)

P2,1 = (α0, α0y0 + β1)

P2,2 = (α0, α0y0 + β2)
...

P2,q = (α0, α0y0 + βq)
...

Pq2,1 = (αq2−2, α(q2−2)(q+1)y0 + β1)

Pq2,2 = (αq2−2, α(q2−2)(q+1)y0 + β2)
...

Pq2,q = (αq2−2, α(q2−2)(q+1)y0 + βq)

Now we express the Hermitian code Hm over Fq2 as

{(g(P1,1), . . . , g(P1,q), . . . , g(Pq2,1), . . . , g(Pq2,q))|g ∈ L(mQ)}.

Suppose r = (g(P1,1), . . . , g(P1,q), . . . , g(Pq2,1), . . . , g(Pq2,q)) is a codeword that is transmitted

for some g ∈ L(mQ). We will only consider the case m ≥ q2 − 1. Then, for any g ∈ L(mQ),

we may assume

g(Pi,l) = f0(Pi,l) + y(Pi,l) f1(Pi,l) + . . . + yq−1(Pi,l) fq−1(Pi,l)

where deg f j < k(j) for j = 0, 1, 2, . . . , q − 1 and

k(j) = max{i|iq + j(q + 1) ≤ m} + 1 =

⌊
m − j(q + 1)

q

⌋
+ 1

according to Proposition 2 in [22].

For each i, the q rational points Pi,1, . . . , Pi,q have the same first coordinate. Therefore, f j(Pi,l)

does not depend on l. In fact, f j(Pi,l) = f j(αi−2) for i = 2, . . . , q2 and f j(P1,l) = f j(0). Let

u = (u1,1, . . . , u1,q, . . . , uq2,1, . . . , uq2,q) be the received word.

Replace f j(Pi,l) and g(Pi,l) by x j,i and ui,l, respectively, and regard x j,i as variables. From the

39

q rational points in the i-th row, Pi,1, Pi,2, . . . , Pi,q, we get the following equation-system

x0,i + y(Pi,1)x1,i + . . . + (y(Pi,1))q−1xq−1,i = ui,1,

x0,i + y(Pi,2)x1,i + . . . + (y(Pi,1))q−1xq−1,i = ui,2,
...

x0,i + y(Pi,q)x1,i + . . . + (y(Pi,1))q−1xq−1,i = ui,q.

(5.2)

Since the coefficient matrix for (5.2) is a Vandermonde matrix, there is a unique solution to

(5.2). Obviously, when u = (u1,1, . . . , u1,q, . . . , uq2,1, . . . , uq2,q) is a codeword, that is u has no

errors, then we can solve (x0,i, x1,i, . . . , xq−1,i) from (5.2) for all i = 1, . . . , q2 . By solving all

the q2 equation-systems, we get q2 solutions:

(f0(0), f1(0), . . . , fq−1(0))

(f0(α0), f1(α0), . . . , fq−1(α0))

(f0(α1), f1(α1), . . . , fq−1(α1))
...

...
...

(f0(αq2−2), f1(αq2−2), . . . , fq−1(αq2−2))

(5.3)

Let r j = (f j(0), f j(α0), f j(α1), . . . , f j(αq2−2)), j = 0, 1, . . . , q − 1.

Whenever u = (u1,1, . . . , u1,q, . . . , uq2,1, . . . , uq2,q) has errors, there exists at least one j such

that r j has errors.

Suppose that we bundle each consecutive q symbols of Hm together and obtain a new code

called as q-folded Hermitian code H′m of block length q2, over the alphabet Fq2q . Then, if H′m

has agreement at least t, then at least t many of (u1,1, u1,2, . . . , u1,q), . . . , (uq2,1, uq2,2, . . . , uq2,q)

have no errors, and at least t many of solutions as obtained in (5.3) are correct solutions. Then,

each r j has agreement at least t, and agreement places are same for all j = 0, 1, . . . , q − 1.

Now, we define RS codes by using sub-polynomials used in H′m as

C j+1 := {(f j(0), f j(α0), . . . , f j(αq2−2))|deg(f j) <
⌊
m − j(q + 1)

q

⌋
+ 1}

for each j = 0, 1, . . . , q−1. So, decoding H′m is reduced to decoding heterogeneous interleaved

RS codes, C j+1 for j = 0, 1, . . . , q − 1. Hence, we proved:

Theorem 5.1.2 Decoding q-folded Hermitian code over Fq2q can be reduced to decoding

heterogeneous interleaved Reed-Solomon codes over Fq2 . As a generalization, for any positive

40

integer h, qh-folded Hermitian code over Fq2qh can be reduced to decoding heterogeneous

interleaved h-folded Reed-Solomon codes over Fq2h .

Remark 5.1.3 Through the reduction steps of q-folded Hermitian code to interleaved RS

codes, most time consuming operation is solving (5.2) for q2 times, whose time complexity is

at most q2O(q3) = O(q5). Next, after decoding RS codes, recovering the Hermitian codeword

again requires to calculate (5.2) for q2 times by replacing with the output of the decoding

algorithm of interleaved RS codes, which takes at most q2 · q2O(logq) = O(q4logq). Overall,

reduction and recovery have time complexity at most O(q5).

5.2 Decoding Folded Hermitian Codes with Heterogeneous IRS Decoder

We studied decoding of interleaved RS codes in Section 3.2. When the IRS Decoder is used

to decode q-folded Hermitian codes, Theorem 3.2.2, Theorem 5.1.2 and Remark 5.1.3 result

in the following theorem.

Theorem 5.2.1 Assume that messages and error values are random.

i. q-folded Hermitian codes H′m over Fq2q satisfying⌊
m
q

⌋
+ 1 ≤


q2 +

∑q−1
j=0 (

⌊m− j(q+1)
q

⌋
+ 1)

q + 1


and having rate R =

∑q−1
j=0 k(j)

q3 can be corrected with the IRS Decoder up to error rate ε,

where

ε <
q

q + 1
(1 − R) (5.4)

with probability at least 1 − q
q+1 (1 − R)

ii. q-folded Hermitian codes H′m over Fq2q satisfying⌊
m
q

+ 1
⌋
>


q2 +

∑q−1
j=0 (

⌊m− j(q+1)
q

⌋
+ 1)

q + 1


and can be corrected with the IRS Decoder up to error rate ε, where

ε ≤ 1 −

⌊
m
q

⌋
+ 1

q2 (5.5)

41

with probability at least η =

⌊
m
q

⌋
+1

q2 .

Complexity of the decoding procedure is at most O(q11) field operations.

Remark 5.2.2 There are better decoding algorithms for number of burst errors less than

q2 −
q2 + minq−1

j=1{k j}

2
= q2 −

q2 −
⌊ (q−1)(q+1)

q

⌋
+ 1

2
.

It is seen that (5.4) is better than this bound. Similarly, we observe that (5.5) is better than

this bound for m < q3 − q2.

Example 5.2.3 Let q=4 and m=37. Then, Hermitian curve is defined by y4 + y = x5 over F42 .

Let D be sum of all finite points of the Hermitian curve D = R1 + R2 + . . . + R64 and Q is

the point at infinity. We try to decode the Hermitian code H37 := C(D, 37Q) over F42 with the

IRS Decoder. Firstly, we calculate k(0) = 10, k(1) = 9, k(2) = 7, k(3) = 6. Then, according

to Theorem 5.1.2, decoding 4-folded H37 code can be reduced to decoding IRS(16; 10, 9, 7, 6)

code over F42 . Therefore, 4-folded H37 code can be decoded up to 6 errors with IRS decoder

with failure probability 3, 75·10−1. However, when IRS Decoder is simulated for this case, it is

experimentally obtained that the failure probability is approximately 1, 72·10−3. Experimental

failure probabilities P f of Hermitian code decoder based on Algorithm 3 is presented in Table

5.1.

Table 5.1: Simulated Failure Probability for Hermitian Codes

Code corrected errors η P f

4-folded H37 6 3, 75 · 10−1 1, 72 · 10−3

In [22], an example of decoding H37 over F42 for some burst error of weight 24 is demon-

strated. Theorem 5.2.1 says that at least 62,5 percent of burst errors of weight 24 can be

corrected while experimental results say that approximately 99,828 percent of burst errors of

weight 24 can be corrected. Therefore, results obtained in this section are an extension of

results in [22].

42

5.3 List Decoding Folded Hermitian Codes

We studied list decoding of interleaved codes in Chapter 4. And, it is observed that decoding

Hermitian codes can be reduced to decoding heterogeneous interleaved Reed-Solomon codes

in Section 5.1. Hence, following result is a direct consequence of Theorem 4.2.9, Theorem

5.1.2, and Remark 5.1.3.

Proposition 5.3.1 Let q-folded Hermitian code H′m be reduced to interleaving of RS codes

C1, . . . ,Cq of length q2 and minimum distance δi. Let δ = miniδi and, for η < δ, l(η) be the

maximum of list sizes of C1, . . . ,Cq when list decoded up to radius η with time complexity Ti.

And, let x =
⌈
η
δ−η

⌉
and y =

⌈
log2

δ
δ−η

⌉
. Then H′m can be list decodable up to radius η with list

size L(η) <
(

x+y
y

)
l(η)y and time complexity at most O(q5 +

∑
i Ti + q4(log2q + l(η))L(η)).

Since any RS code can be list decodable up to the largest decoding radius by GS algorithm up

to date, hence we obtain the following result by using Proposition 5.3.1 and Theorem 4.1.1.

Corollary 5.3.2 For every 0 < ε, let r1 =

⌊
m
q

⌋
+1

q2 , r2 =

⌊
m−q2+1

q

⌋
+1

q2 , x =

⌈
1−
√

(1+ε)r1√
(1+ε)r1−r1

⌉
and

y =
⌈
log2

1−r1
ε

⌉
. q-folded Hermitian code H′m can be list decoded up to a fraction 1−

√
(1 + ε)r1

of errors in time O(q5 +q4
(

x+y
y

)
(log2q+ ε−1/

√
r2)(ε−1/

√
r2)y) and outputs a list of size at most(

x+y
y

)
(ε−1/

√
r2)y where alphabet size of the code is q2q.

Proof. Parameters k(j) are calculted explicitly for j = 0, 1, . . . , q − 1 as

k(j) = max{i|iq + j(q + 1) ≤ m} + 1

= max{i|i ≤ m− j(q+1)
q } + 1

=
⌊m− j(q+1)

q

⌋
+ 1.

Hence,

max j{k(j)} = k(0) =

⌊
m
q

⌋
+ 1 (5.6)

and

min j{k(j)} = k(q − 1) =

⌊
m − q2 + 1

q

⌋
+ 1. (5.7)

The remaining parts of the theorem follows from Proposition 5.3.1 and Theorem 4.1.1. �

We give the decoding algorithm steps of q-folded Hermitian code described in Algorithm 6.

43

Example 5.3.3 We try to decode the Hermitian code H37 := C(D, 37Q) over F42 given in

Example 5.2.3 with Algorithm 6. We calculate r1 = 10/16, r2 = 6/16, x = 2 and y = 3 for a

chosen ε = 0, 05. Then, 4-folded H37 can be list decodable up to 3 errors (totally 12 errors)

in time approximately O(410) with list size at most O(47).

Moreover, in order to increase the decoding radius, we can think each sub-RS codes as folded

RS codes. But, for this, we need to fold Hermitian code extra (approximately O(1/ε2) times

for some ε). By folding Hermitian code extra, each sub-RS code becomes a folded RS code,

whose list decoding by GR algorithm reaches to capacity, and so, we obtain by using Theorem

5.1.2, Proposition 5.3.1 and Theorem 4.1.2 a folded Hermitian codes that has the following

results.

Corollary 5.3.4 For every 1
q < ε < 1 − r1 where r1 =

⌊
m
q

⌋
+1

q2 , let r2 =

⌊
m−q2+1

q

⌋
+1

q2 , x =
⌈

1−r1−ε
ε

⌉
,

y =
⌈
log2

1−r1
ε

⌉
and T = (q2)O(ε−1log2(1/r2)), then q/ε2-folded Hermitian codes of block length

(εq)2 can be list decoded up to a fraction 1−r1−ε of errors in time O(q5+q4
(

x+y
y

)
(log2q+T)T y)

and outputs a list of size at most
(

x+y
y

)
T y where alphabet size of the code is q2O(q/ε2).

Similar to Algorithm 6, a list decoding algorithm of qh-folded Hermitian code can be de-

scribed.

It is not easy to compare fairly our list decoding algorithm for folded Hermitian codes with

previously known algorithms. We briefly mention similarities and differences with GS algo-

rithm [11]. Similar to GS algorithm, our decoding algorithm is in polynomial time and output

list size is polynomial. However, our decoding radius given in Corollary 5.3.4 is generally

better than GS algorithm (see Theorem 4.1.1), which is observed below, but our alphabet size

is very big. In order to reduce alphabet size, one can use code concatenation as it is done in

[12].

We will now compare our list decoding radius 1− r1− ε with one in [11]. The decoding radius

can be at most

η < 1 − r1 − ε = 1 −
max j{k(j)}

q2 − ε

for ε > 1/q, so by (5.6),

η < 1 −

⌊
m
q

⌋
+ 1

q2 −
1
q
.

44

Algorithm 6 List Decoding q-folded Hermitian Codes
Require:

• Let α be a primitive element in GF(q2)

• Let P1,1 = (0, β1), P2,1 = (α0, α0y0+β1),...,Pq2,1 = (αq2−2, α(q2−2)(q+1)y0+β1),..., P1,q = (0, βq),

P2,q = (α0, α0y0 + βq),...,Pq2,q = (αq2−2, α(q2−2)(q+1)y0 + βq).

• Suppose r = (G1,G2, . . . ,Gq2) is a codeword that is transmitted, where Gi = (g(Pi,1),

. . . , g(Pi,q)) and g ∈ L(mQ).

• Let U = (U1, . . . ,Uq2) be the received word where Ui = (ui,1, . . . , ui,q)

Ensure: List L of all c ∈ C so that ∆q2q (r, c) ≤ η.

1: Solve the following equation-system

x0,i + y(Pi,1)x1,i + . . . + (y(Pi,1))q−1xq−1,i = ui,1,

x0,i + y(Pi,2)x1,i + . . . + (y(Pi,1))q−1xq−1,i = ui,2,

...

x0,i + y(Pi,q)x1,i + . . . + (y(Pi,1))q−1xq−1,i = ui,q.

2: Get q2 solutions:

(f0(0) , f1(0) , . . . , fq−1(0))

(f0(α0) , f1(α0) , . . . , fq−1(α0))

(f0(α1) , f1(α1) , . . . , fq−1(α1))
...

...
...

(f0(αq2−2) , f1(αq2−2) , . . . , fq−1(αq2−2))

3: C j+1 := {(f j(0), f j(1), . . . , f j(αq2−2))|deg(f j) < k(j)} for each j = 0, 1, . . . , q − 1.

4: Define H′m as interleaving of C1, . . . ,Cq.

5: Decode H′m with Algorithm 4.

6: Let L be the output list of Step 5 with size l.

7: Calculate the following equations by replacing xi, j,k with the components of each element of L for

i = 1, . . . , q2; j = 0, 1, . . . , q − 1; and k = 1, . . . , l

ūi,1,k = y(Pi,1)0x0,i,k + . . . + (y(Pi,1))q−1xq−1,i,k,

ūi,2,k = y(Pi,2)0x0,i,k + . . . + (y(Pi,1))q−1xq−1,i,k,

...

ūi,q,k = y(Pi,q)0x0,i,k + . . . + (y(Pi,1))q−1xq−1,i,k.

8: Let Ūi,k = (ūi,1,k, ūi,2,k, . . . , ūi,q,k) for i = 1, . . . , q2 and k = 1, . . . , l.

9: return Ūk = (Ū1,k, . . . , Ūq2,k) for k = 1, . . . , l.

45

At worst, η can be chosen as

1 −
m
q + 1

q2 −
1
q

= 1 −
m + q + q2

q3 (5.8)

On the other hand, Guruswami-Sudan list decoding radius is at most 1 −
√

R, where R is the

rate of Hermitian code. By using Corollary 1 of [22],

dimHm =

q−1∑
j=0

k(j),

and so

R =

∑q−1
j=0 k(j)

q3 .

Then,

1 −
√

R ≤ 1 −

√∑q−1
j=0 k(j)

q3

= 1 −

√∑q−1
j=0

⌊ m− j(q+1)
q

⌋
+1

q3

≤ 1 −

√∑q−1
j=0

m− j(q+1)
q −1+1

q3

= 1 −

√∑q−1
j=0

m
q − j q+1

q

q3

= 1 −

√
m− (q−1)q

2
q+1

q

q3

= 1 −
√

2m−q2+1
2q3

(5.9)

It is time to investigate for which values of m, (5.8) is better than (5.9).

1 −
m + q + q2

q3 > 1 −

√
2m − q2 + 1

2q3

m + q + q2

q3 <

√
2m − q2 + 1

2q3

2m2 + (4q + 4q2 − 2q3)m + q5 + 2q4 + 3q3 + 2q2 < 0 (5.10)

If q ≥ 7 and m takes values between 1/2(−2q − 2q2 + q3 −
√

2q3 − 4q4 − 6q5 + q6) and

1/2(−2q − 2q2 + q3 +
√

2q3 − 4q4 − 6q5 + q6), then (5.10) is satisfied. Since it is preas-

sumed that m ≥ q2 − 1, we obtain that m must be at least max{q2 − 1, 1/2(−2q − 2q2 +

q3 −
√

2q3 − 4q4 − 6q5 + q6)} in order to have better decoding radius. If one chooses m =[
(q3−2q2−2q)

2

]
, then the difference maximizes.

We present he following example to illustrate the results.

46

Example 5.3.5 We try to decode the Hermitian code H1776 := C(D, 1776Q) over F162 where

m was chosen as m =

[
(q3−2q2−2q)

2

]
. We calculate r1 = 0, 44, r2 = 0, 38, x = 4 and y = 3 for a

given ε = 0, 125. Then, 1024-folded H1776 code can be list decodable up to 111 errors (totally

1776 errors) in time approximately O(1654) with list size at most O(1650) whose alphabet size

is 162048 and block length is 4. On the other hand, GS Algorithm decodes H1776 up to 1405

errors in time approximately O(166) with list size at most O(166) whose alphabet size is 162

and block length is 163.

47

CHAPTER 6

CONCLUSION

In this thesis decoding algorithms for interleaved Reed-Solomon codes and their applications

are presented.

Firstly, a probabilistic algorithm solving simultaneous polynomial reconstruction problem for

polynomials allowed to have distinct degrees is obtained. And, it is extended in order to

increase the probability of the algorithm. Then, this algorithm is used for decoding hetero-

geneous interleaved Reed-Solomon codes, Reed Solomon codes and folded-Hermitian codes

probabilistically. All probabilistic decoders have better decoding radius than half the mini-

mum distance and they run in polynomial time.

Next, it is shown that interleaved codes whose minimum distances would be different can be

list decodable up to radius of minimum of list decoding radii of subcodes, and a list decoding

algorithm for those codes using sub-list decoding algorithms is presented. Then, by using

decoding algorithm of interleaved different codes, a new basic decoding algorithm for folded

Hermitian codes with significant list decoding radius is obtained.

48

REFERENCES

[1] E. R. Berlekamp, L. Welch, Error correction of algebraic block codes, US Patent, Num-
ber 4, 633, 470, 1986.

[2] D. Bleichenbacher, A. Kiayias, and M. Yung, Decoding of interleaved Reed Solomon
codes over noisy data, in Springer Lecture Notes in Computer Science, vol. 2719, pp.
97-108, Jan. 2003.

[3] E. L. Blokh and V. V. Zyablov, Coding of generalized concatenated codes, Transl. from
Russian, original in Problemy Peredachi Informatsii, pp. 45-50 Probl. Inf. Transm., vol.
10, pp. 218-222, Jul.-Sep. 1974.

[4] A. Brown, L. Minder, and A. Shokrollahi, Probabilistic decoding of interleaved RS-
codes on the q-ary symmetric channel, in Proc. IEEE Int. Symp. Information Theory,
Chicago, IL, p. 327, 2004.

[5] A. Brown, L. Minder, and A. Shokrollahi, Improved decoding of interleaved AG codes,
in Cryptography and Coding . Berlin, Germany: Springer Verlag, vol. 3796 of Lecture
Notes in Computer Science, pp. 37-46, Dec. 2005.

[6] P. Elias, List decoding for noisy channel, Res. Lab. Electron., MIT, Cambridge, MA,
Tech. Rep. 335, 1957.

[7] G. L. Feng and T. R. N. Rao, Decoding algebraic geometric codes up to the designed
minimum distance, IEEE Trans. Inform. Theory, vol. 39, pp. 3746, Jan 1993.

[8] P. Gopalan, V. Guruswami, P. Raghavendra, List decoding tensor products and inter-
leaved codes, STOC’09: Proceedings Of The 2009 Acm Symposium on Theory of
Computing Pages: 13-22, 2009.

[9] V.D. Goppa, Codes associated with divisors, Probl. Peredachi Inform. vol. 13 (1), pp.
33-39, 1977. Translation: Probl. Inform. Transmission, vol. 13, pp. 22-26, 1977.

[10] P. Gemmell and M. Sudan. Highly resilient correctors for polynomials, Information pro-
cessing letters, 43(4):169-174, Sep. 1992.

[11] V. Guruswami and M. Sudan, Improved decoding of Reed-Solomon and algebraic-
geometry codes, IEEE Trans. Inf. Theory, vol. 45, pp. 1757-1767, Nov. 1999.

[12] V. Guruswami and A. Rudra Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy, IEEE Trans. Inf. Theory, vol. 54, pp. 135-150,
2008.

[13] V. Guruswami, Artin automorphisms, cyclotomic function fields, and folded list decod-
able codes, STOC’09: Proceedings Of The 2009 Acm Symposium on Theory of Com-
puting Pages: 23-32, 2009.

49

[14] V. Guruswami Algorithmic Results in List Decoding, volume 2 of Foundations and
Trends in Theoretical Computer Science. NOW publishers, No 2, 107-195, 2007.

[15] M.D. Huang and A.K. Narayanan, Folded algebraic geometric codes from Galois exten-
sions, http://arxiv.org/abs/0901.1162v1

[16] J. Justesen, C. Thommesen, and T. Hoholdt, Decoding of concatenated codes with in-
terleaved outer codes, in Proc. IEEE Int. Symp. Inf. Theory, Chicago, IL, p. 329, 2004.

[17] V. Y. Krachkovsky and Y. X. Lee, Decoding for interleaved Reed-Solomon schemes,
IEEE Trans. Magn., vol. 33, pp. 2740-2743, Sep. 1997.

[18] V. Y. Krachkovsky, Reed-Solomon codes for correcting phased error busts, IEEE Trans.
Inf. Theory, vol. 49, pp. 2975-2984, Nov. 2003.

[19] V. Y. Krachkovsky, Y. X. Lee, and H. K. Garg, Decoding of parallel RS codes with
applications to product and concatenated codes, in Proc. IEEE Int. Symp. Inf. Theory,
Boston, MA, p. 55, 1998.

[20] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in
polynomial time’. In Proc. 46th IEEE Symp. Foundations of Comp. Science, pages 285-
294, 2005.

[21] F. Parvaresh and A. Vardy, Multivariate interpolation decoding beyond the Gurswami-
Sudan radius, in Proc. 42nd Annu. Allerton Conf. Commun., Contr. Comput., Urbana,
IL, 2004.

[22] J. Ren, On the structure of Hermitian codes and decoding for burst errors, IEEE Trans.
Inf. Theory, vol. 50, pp. 2850-2854, 2004.

[23] S. Sakata, J. Justesen, Y. Madelung, H. Elbrond Jensen and T. Hoholdt, Fast decoding of
algebraic geometric codes up to the designed minimum distance, IEEE Trans. Inform.
Theory, vol. 41, pp. 1672-1677, Nov. 1995.

[24] S. Sakata, H. Elbrond Jensen and T. Hoholdt, Generalized Berlekamp-Massey decod-
ing of algebraic geometric codes up to half the Feng-Rao bound, IEEE Trans. Inform.
Theory, vol. 41, pp. 1762-1768, Nov. 1995.

[25] S. Sakata, J. Justesen, Y. Madelung, H. Elbrond Jensen and T. Hoholdt, A fast decoding
method of AG codes from Miura-Kamiya curves Cab up to Half the Feng-Rao bound,
Finite Fields and their Applications vol. 11, pp. 83-101, 1995.

[26] M. Shokrollahi and H. Wasserman, List decoding of algebraic-geometric codes, IEEE
Trans. Inf. Theory, vol. 45, pp. 432-437, Mar. 1999.

[27] G. Schmidt, V. R. Sidorenko, and M. Bossert, Error and erasure correction of inter-
leaved Reed-Solomon codes, in Proc. Int. Workshop Coding Cryptogr., Bergen, Norway,
pp. 20-29, Mar. 2005.

[28] G. Schmidt, V. R. Sidorenko, and M. Bossert, Interleaved Reed-Solomon codes in con-
catenated code designs, in Proc. IEEE Information Theory Workshop, Rotorua, New
Zealand, pp. 187-191, Aug. 2005.

50

[29] G. Schmidt, V. R. Sidorenko, and M. Bossert, Error and erasure correction of inter-
leaved Reed-Solomon codes, in Coding and Cryptography. Berlin, Germany: Springer-
Verlag, vol. 3969 of Lecture Notes in Computer Science, pp. 22-35, 2006.

[30] G. Schmidt, V. R. Sidorenko, and M. Bossert, Heterogeneous interleaved Reed-Solomon
code designs, in Proc. 10th Int. Workshop Algebraic Combin. Coding Theory (ACCT-
10), Zvenigorod, Russia, pp. 230-233, Sep. 2006.

[31] G. Schmidt, V. R. Sidorenko, and M. Bossert, Decoding Reed-Solomon codes beyond
half the minimum distance using shift-register synthesis, in Proc. IEEE Int. Symp. Inf.
Theory, Seattle, WA, pp. 459-463, Jul. 2006.

[32] G. Schmidt, V. R. Sidorenko, and M. Bossert, Collaborative decoding of interleaved
Reed-Solomon codes and concatenated code designs, IEEE Trans. Inform. Theory 55,
no. 7, 2991-3012, 2009.

[33] C. Senger, V. Sidorenko, M. Bossert, and V. Zyablov, Decoding generalized concate-
nated codes using interleaved Reed-Solomon codes, in Proc. IEEE Int. Symp. Informa-
tion Theory, Toronto, ON, Canada, 2008

[34] H. Stichtenoch, A note on Hermitian codes over GF(q2), IEEE Trans. Inf. Theory, vol.
34, pp. 1345-1348, Sept. 1988.

[35] M. Sudan, Decoding of Reed-Solomon codes beyond the error-correction bound, J.
Complexity, vol. 13, pp. 180-193, 1997.

[36] M. A. Tsfasman, S. G. Vladut and T. Zink, Modular curves, Shimura curves and Goppa
codes, better than Varshamove-Gilbert bound, Math.Nachr., vol. 104, pp. 13-28, 1982.

[37] J. M. Wozencraft, List decoding, in Quarterly Progress Report. Cambridge, MA: Res.
Lab. Electronics, MIT, vol. 48, pp. 90-95, 1958.

[38] T. Yaghoobian and I. F. Blake, Hermitian codes as generalized Reed-Solomon codes,
Design, Codes and Cryptography, vol. 2, pp, 5-17, 1992.

[39] V. A. Zinoviev, Generalized cascade codes, Transl.: from Russian, original in Problemy
Peredachi Informatsii, pp. 5-15 Probl. Inf. Transm., vol. 12, pp. 2-9, Jan.-Mar. 1976.

51

VITA

PERSONAL INFORMATION

Surname, Name: Yayla, Oğuz

Date and Place of Birth: 1981 - Ankara

Marital Status: Married with one daughter

email: oguzyayla@gmail.com

ACADEMIC DEGREES

Ph.D. METU, Department of Cryptography 2011

Graduate School of Applied Mathematics

Middle East Technical University-Ankara

Supervisor: Prof. Dr. Ferruh Özbudak

Thesis Title: On Decoding Interleaved Reed-Solomon Codes

M.Sc. METU, Department of Cryptography 2006

Graduate School of Applied Mathematics

Middle East Technical University-Ankara

Supervisor: Prof. Dr. Ersan Akyıldız

Thesis Title: Scalar Multiplication on Elliptic Curves

Minor Degree METU, Dept. of Electrical and Electronics Eng.(Telecommunications) 2005

B.S. METU, Department of Mathematics 2004

High School Bursa Boys High School 1999

WORK EXPERIENCE

2008 - 2011 METU, Institute of Applied Mathematics Research Assistant

52

PUBLICATIONS

A. Papers in Progress:

A1. with F. Özbudak, List Decoding Interleaved Codes and Folded Hermitian Codes, submit-

ted to AAECC.

A2. with F. Özbudak, Decoding Interleaved Reed-Solomon Codes and Folded Hermitian

Codes, in preperation.

B. Papers published in National Conference Proceedings:

B1. with M. Cenk, Ayrık Logaritma Problemini Kullanan E-İmza, Proceedings of Informa-

tion Security and Cryptology Conference, (ISCTURKEY 2006), Ankara, 2006 pp. 1-6.

B2. with S. Akleylek, PKI-Lite: A PKI System with Limited Resources, Proceedings of

Information Security and Cryptology Conference, (ISCTURKEY 2007), Ankara, 2007, pp.

59-62.

B3. DSA Sisteminin Çalıştırılması ve Test Edilmesi, Proceedings of Information Security and

Cryptology Conference, (ISCTURKEY 2007), Ankara, 2007, pp. 290-297.

B4. with H. Özadam, On Algebraic Attacks Using Groebner Basis, Proceedings of Informa-

tion Security and Cryptology Conference, (ISCTURKEY 2007), Ankara, 2007, pp. 312-318.

B5. Kriptografik Modüllerin Güvenlik Gereksinimleri, Proceedings of Information Security

and Cryptology Conference, (ISCTURKEY 2008), Ankara, 2008, pp. 253-256.

53

