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ONSOZ

Bu projede, zamana bagh Magnetohidrodinamik (MHD) problemleri, pertiirbe edilmis sinira
sahip dikdoértgen bir kesitte sinir elemanlari metodu ile gesitli iletkenlik kosullari icin farkli
temel ¢Ozimler kullanilarak ¢6zlilmis ve elde edilen sonuglar karsilastirilmali olarak
verilmistir. Magnetohidrodinamik denklemleri, viskoz, sikistirlamayan ve elektrik ileten
sivilarin akisi ve manyetik alanlarla arasindaki etkilesimin sonucunda ortaya ¢ikmaktadir.
Proje kapsaminda, birbirine bagh magnetohidrodinamik denklemleri o6ncelikle uygun
dontsimler kullanilarak  birbirinden bagimsiz  konveksiyon-difiizyon  denklemlerine
dontstirilip buna karsihk gelen temel ¢oziimler yardimiyla bolge integrali iceren sinir
elemanlari yontemi ve karsilikli sinir elemanlari yontemi ile ¢ozilmistir. Ardindan, bu
konveksiyon-diflizyon denklemleri uygun dénitsimler yardimiyla modifiye edilmis Helmholtz
denklemlerine donustirilip yine karsilik gelen temel ¢oziimler kullanilarak bolge integrali
iceren sinir elemanlari yontemi ve karsilikli sinir elemanlari yontemi ile ¢ozlilmustir.
Pertirbe edilmis sinirn MHD akis ve indiklenmis manyetik alan Uzerindeki etkileri her iki
yontemle elde edilmis ve sonuglar karsilastirilmali bir sekilde grafiksel olarak farkli Hartmann
sayllari icin gosterilmistir. Projenin ciktilari uluslararasi bir konferansta sunulmus ve makale
olarak basilmistir. GAP-101-2018-2768 kodlu projemiz ODTU Bilimsel Arastirma Projeleri
Koordinasyon Birimi’nce desteklenmistir.
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OZET

Bu calismada viskoz, sikistirilamayan, elektrike¢e iletken sivilarin zamana bagli akisi manyetik
alan etkisinde ve pertiirbe edilmis sinira sahip dikdortgen bir kesitte incelenmistir. Kesitin {ist
duvart kiiclik bir pertiirbasyon parametresi kullanilarak pertiirbe edilmis olup, bu sekilde
sikistirlmis  damarlardaki  kan akisin1  canlandirmak amaclanmistir.  Problemde,
magnetohidrodinamik denklemleri hiz ve indiiklenmis manyetik alan cinsinden birbirine bagl
kuple denklemler olup kesit duvarlar1 hareketsizdir ve kesitin yan duvarlar1 yalitilmis olup alt
ve st duvarlart tam iletkendir. Bolgenin ayristirllmasinda, bolge integrali igeren sinir
elemanlar1 yontemi ve karsilikli smir elemanlart yontemi kullanilmis ve zamanin
ayristirtlmasinda geri sonlu fark semasit kullanilmistir. Birbirine baghh kuple olan
magnetohidrodinamik denklemleri ilk olarak uygun dontistimler kullanilarak birbirinden
bagimsiz konveksiyon-difiizyon denklemlerine doniistiiriilmiis, ardindan da istel formda bir
doniisiim yardimiyla modifiye edilmis Helmholtz denklemlerine doniistiiriilmiistiir. Boylece
olusan denklemler karsilik gelen temel c¢oziimler kullanilarak bolge integrali igeren sinir
elemanlar1 yontemi ve karsilikli sinir elemanlar1 yontemi ile ¢oziilmiistiir. Her iki yontemle de
elde edilen sonuglar kararli halde, farkli Hartmann say1 degerleri ve farkli pertlirbasyon

parametreleri cinsinden karsilastirilmistir.



ABSTRACT

The unsteady magnetohydrodynamic (MHD) flow of a viscous, incompressible and
electrically conducting fluid in a rectangular duct with a perturbed boundary, is investigated.
A small boundary perturbation is applied on the upper wall of the duct which is encountered
in the visualization of the blood flow in constricted arteries. The MHD equations which are
coupled in the velocity and the induced magnetic field are solved with no-slip velocity
conditions and by taking the side walls as insulated and the Hartmann walls as perfectly
conducting. Both the domain boundary element method (DBEM) and the dual reciprocity
boundary element method (DRBEM) are used in spatial discretization with a backward finite
difference scheme for the time integration. These MHD equations are decoupled first into two
transient convection-diffusion equations, and then into two modified Helmholtz equations by
using suitable transformations. Then, the DBEM or DRBEM is used to transform these
equations into equivalent integral equations by employing the fundamental solution of either
steady-state convection-diffusion or modified Helmholtz equations. The DBEM and DRBEM
results are presented and compared by equi-velocity and current lines at steady-state for

several values of Hartmann number and the boundary perturbation parameter.



PROJE ANA METNI

Bu projede, zamana bagli Magnetohidrodinamik (MHD) problemleri, pertiirbe edilmis sinira
sahip dikdortgen bir kesitte siir elemanlart metodu ile ¢esitli iletkenlik kosullart i¢in farkli
temel ¢Oziimler kullanilarak ¢oziilmiis ve elde edilen sonuglar karsilagtirilmali olarak
verilmistir. Magnetohidrodinamik denklemleri, viskoz, sikistirllamayan ve elektrik ileten
stvilarin akigi ve manyetik alanlarla arasindaki etkilesimin sonucunda ortaya ¢ikmaktadir. Bu
tip denklemler, jeotermal enerji elde edilmesi, sivi metal iiretimi ve niikleer flizyon gibi
endiistriyel alanlarda uygulamalara sahiptir. Bu denklemler icin teorik ¢oziim sadece
problemin basitlestirilmis formlarinda mevcuttur. Ancak bu basitlestirme gercek uygulama
alanlarindaki problemleri tam anlamiyla irdeleyememektedir. Dolayistyla bu problemin gercek

anlamda incelenebilmesi i¢in efektif niimerik metotlara ihtiyag duyulmaktadir.

Magnetohidrodinamik problemlerinin ¢oziimleri icin literatiirde ¢ogunlukla sonlu elemanlar
metodu ve karsilikli sinir elemanlart metotlar1 kullanilmistir. Mevcut olan ¢oziimlerde bolge
genellikle dikdortgen, kare ya da silindir olup diiz sinirlara sahiptir. Yapilan calismalarin
ekserisi zamandan bagimsiz olup, zamana bagli olarak c¢alisilan karsilikli simir elemanlar
yonteminde ise yalnizca kii¢iik Hartmann degerleri incelenebilmistir. Bu proje calismasinda
hem zamana bagli MHD problemi hem de pertiirbe edilmis sinir1 olan bolgede elde edilen hiz

ve indiiklenmis manyetik alanin davranis degisiklikleri fiziksel olarak incelenmistir.

Birbirine bagl kuple olan magnetohidrodinamik denklemleri ilk olarak uygun doniisiimler
kullanilarak birbirinden bagimsiz konveksiyon-difiizyon denklemlerine doniistiiriilmiistiir ve
bu smir kosullarinin birbirlerine bagimli hale gelmesine neden olmustur. Ardindan, bu
konveksiyon-diflizyon denklemleri uygun doniisiimler yardimiyla modifiye edilmis Helmholtz
denklemlerine indirgenmistir. Konveksiyon-difiizyon denklemleri, karsilik gelen temel
coziimler yardimiyla bolge integrali iceren smir elemanlar1 yontemi ile niimerik olarak
¢oziilmiis ve modifiye edilmis Helmholtz denklemleri de ayni sekilde karsilik gelen temel

coziimler kullanilarak bolge integrali iceren sinir elemanlar1 yontemi ile niimerik olarak



cOziilmiistiir. Elde edilen ¢oziimler karsilastirilmis ve anlasilmistir ki konveksiyon-difiizyon
temel ¢oziimii ile elde edilen sonuglar daha basarilidir. Bu sebeple ¢alismanin devaminda ele

alinan uygulama problemlerinde bu temel ¢6ziim kullanilmistir.

Elde edilen niimerik ¢oziimler literatirde mevcut olan sonuclar ile karsilastirilmis ve
birbirleriyle biiyiik bir uyum ic¢inde olduklar1 gézlenmistir. Niimerik ¢éziimler elde edilirken
T=1 zamaninda ¢oziimlerin kararli hale ulastig1 gozlenmis ve ilgili grafiklerle desteklenmistir.
Bu sebeple calismadaki tiim niimerik hesaplamalar 7=/ zamaninda yapilmistir. Farklhi
pertiirbasyon parametreleri i¢in analizler yapilmis ve pertiirbasyon katsayisi biiylidiikce hizin
azaldigi, indiiklenmis manyetik alanin ise arttig1 gézlenmistir. Hartmann sayisinin pertiirbe
edilmis tist duvara sahip kesit icerisindeki etkisini net olarak gozlemleyebilmek i¢in dncelikle
farkli Hartmann say1 degerleri igin dilizgiin sinirlara sahip kesit problemi incelenmis daha
sonra pertlirbe edilmis yiizeye sahip problem i¢in aym1 Hartmann degerleri incelenmistir.
Gortlmiistiir ki kiigiik Hartmann degerleri i¢in hiz pertiirbe edilmis yilizeyli problemde daha
kii¢iik iken Hartmann degeri arttik¢a aradaki fark yok olmustur. indiiklenmis manyetik alan
ise pertlirbe edilmis yiizeyli problemde tiim Hartmann degerleri i¢in daha biiyiik ¢cikmistir. Son
olarak, karsilikli smir elemanlar1 metodu ile konveksiyon-difiizyon temel c¢oziimleri
kullanilarak diizgiin ylizeye ve pertiirbe edilmis yiizeye sahip magnetohidrodinamik problemi
coziilmiistiir. Farkli Hartmann degerleri icin yapilan incelemede bolge integrali iceren sinir

deger problemi ile benzer sonuglar elde edilmistir.

Projenin 6neri asamasinda:

Ik alti ayhk donemde: zamana bagli magnetohidrodinamik probleminin pertiirbe edilmis
yiizeye sahip dikdortgen kesitli kanalda degisik iletkenlik kosullar i¢in bolge integrali iceren
sinir elemanlar1 yontemi ile farkli temel ¢oziimlerin kullanildigi durumlar i¢in bilgisayar kodu

yazilacagi ve elde edilen sonuglarin grafiksel olarak sunulacagi



ikinci alt1 ayhk dénemde: ayn1 problem icin karsilikli sinir elemanlar1 ydntemi tanimlanarak
ilgili bilgisayar kodunun yazilacagi ve her iki metot ile elde edilen sonuglarin karsilastirilmali

olarak verilecegi

taahhiit edilmisti. Yapilan ¢alismalar sonucu proje Onerisinde belirtilen taahhiitlerin tiimti
yerine getirilmis olup elde edilen sonuglar ayrintili olarak incelenip yorumlanmistir. Proje
ciktis1 olarak yayinlanan makalemizde proje konusu, literatiir taramasi, kullanilan metotlar ve
probleme uygulaniglari, ve elde edilen sonuglar ayrintili olarak verilmistir. Makalemiz bu

rapora eklenmistir.
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In this paper, a numerical study is carried for solving the unsteady magunetohydrodynamic (MHD)
flow of a viscous, incompressible and electrically conducting fluid in a rectangular duct with a perturbed
bouudary subjected to an external magnetic field applied in y-direction. A small boundary perturba-
tion of magnitude ¢ is applied on the upper wall of the duct which is encountered in the visualization
of the vein anatomy and blood flow in constricted arterics. The governing MHD flow convection-
diffusion type equations are coupled in the velocity and the induced magnetic field. No-slip conditions
arc assumed on the boundary of the duct in which the vertical walls arc insulated and the horizontal
walls are perfectly conducting. The numerical method is based on the use of the domain boundary
element method (DBEM) in spatial discretization and a backward finite difference scheme is employed
in time integration. These MHD equations are decoupled first into two transient convection-diffusion
equations, and then into two modified Helmholtz equations by using suitable transformations. Then,
DBEM is used to transform these equations into equivalent integral equations by employing the funda-
mental solution of either steady-state convection-diffusion or modified Helmholtz equations. Thus, the
resulting BEM integral equations contain a domain integral whose kernel involves the multiplication
of the fundamental solution with the first order time derivative of the unknown, and it is treated by
numerical integration. The velocity and the induced magnetic fields are visualized in terms of equi-
velocity and current lines at transient and steady-state levels for several values of Hartmann number
and the boundary perturbation paramecter. The validity of the code is ascertained by comparing the
obtained results with the ones given in literature [2]. The results reveal that the well-known character-
istics of MHD flow arc captured, that is, as M increases the velocity decreases and becomes stagnant at
the center of the duct and a boundary layer formation is observed for both the velocity and the induced
magnetic field. The perturbation parameter and the shape of the curved boundary significantly affect
the behavior of the flow and cause an increase in the magnitude of induced magnetic field. DBEM
with the fundamental solution of convection-diffusion cquation gives better results compared to the
ones obtained with the fundamental solution of modified Helmholtz equation in the sense of increasing

M.
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1. Introduction

Magnetohydrodynamics (MHD) studies the motion of electrically conducting fluids in the presence of magnetic fields. The
magnetic field influences the fluid motion which is expressed mathematically by including the electromagnetic force in the
equations of motion. The interaction between the external magnetic field and fluid motion gives rise to induced magnetic
field through Ohm'’s law. The governing equations of MHD flow are the Navier-Stokes equations of fluid dynamics and
Maxwell’s equations of electromagnetism. MHD has wide range of engineering applications such as MHD generators, pumps,
accelerators, blood flow measurements, power generation, geothermal energy extraction, producing liquid metals, nuclear
fusion. Coupling of these equations, however, leaves analytical solutions available for only simple cases [1-3]. Therefore it
is important to develop efficient numerical techniques to obtain approximate solutions for the MHD flow problems.

Many researchers have investigated the MHD flow problem using several numerical methods. Steady flows have been
studied widely compared to the transient MHD flows in regular domains like rectangular/triangular ducts with straight
boundaries (e.g. [4-6]) and in complex geometries like annular-like domains in [7]. However, here we will focus on only
the papers that provide solution to time-dependent MHD flows. The unsteady MHD flow equations have been studied
using the finite element method (FEM) in two-dimensional rectangular, circular and triangular pipes by Singh and Lal [8].
They observed that when the wall conductivity and Hartmann number increase, the flux through a section is reduced and
the steady-state is approached at a faster rate. Salah et al. [9] developed a solution algorithm for the three-dimensional
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coupled MHD flow. This method is valid for both high and low magnetic Reynolds numbers. Seungsoo and Dulikravich [10]
gave a finite difference method (FDM) for three-dimensional unsteady MHD flow in a rectangular channel along with a
temperature variation. Additionally, Sheu and Lin [11] proposed convection-diffusion-reaction model for solving unsteady
MHD flow with a FDM on non-staggered grids using a transport scheme in each ADI spatial sweep. Their results are in
good agreement with the analytical solutions and show high rate of convergence. Some meshless methods have also been
proposed for solving MHD flow equations in channels of different cross-sections and for arbitrary wall conductivities.
Dehghan and Mirzaei [12,13], and Loukopoulos et al. [14], presented meshless local boundary integral equation method,
meshless Local Petrov Galerkin method and localized meshless point collocation method, respectively, for solving unsteady
MHD flow equations. A numerical scheme which is a combination of the dual reciprocity BEM (DRBEM) for space and the
differential quadrature method (DQM) for the time discretization, is proposed by Bozkaya and Tezer-Sezgin [15] for the
solution of unsteady MHD flow problem in a regular rectangular duct with insulated walls. Thus, the solution was obtained
at any required time level without the need of step-by-step computation with respect to time. For the unsteady MHD flow
in a duct with arbitrary wall conductivity, the BEM formulation with time-dependent fundamental solution is presented by
Bozkaya and Tezer-Sezgin [ 16] and the numerical solutions are obtained for higher values of Hartmann numbers compared
to previous studies.

Concerning the solution of the unsteady MHD flow equations, two BEM formulations namely DBEM and DRBEM are
presented in this paper. The use of the DBEM with different fundamental solutions as a tool for the solution of the MHD
flow equations is the main contribution of this paper. The time-dependent MHD flow in a rectangular duct with a perturbed
boundary subject to an external magnetic field is considered as a physically challenging problem but studied very rarely. The
effect of boundary perturbation on the fluid flow has been given in the work of Mahabaleshwar et al. [ 17] and for the steady
MHD flow, in the study of Marusi¢-Paloka and PaZanin [18] for the Darcy-Brinkman flow and for incompressible viscous
flow by Jager [19]. In the work of Aydin and Tezer-Sezgin [20], the MHD flow direct and Cauchy problems in a rectangular
duct with a perturbed slipping upper boundary are solved asymptotically by the use of dual reciprocity BEM to recover
the slip length on the perturbed boundary through the slip boundary conditions for relatively small values of Hartmann
number. Thus, a small boundary perturbation of magnitude ¢ is applied on the upper Hartmann wall of the duct in the
present study. The walls parallel to applied magnetic field (side walls) are taken to be insulated while the perpendicular
walls (Hartmann walls) are perfectly conducting with the assumption of no-slip velocity conditions on the duct walls. The
convection-diffusion type coupled MHD equations are decoupled first into two transient convection-diffusion equations but
it makes the boundary conditions coupled (for perfectly conducting walls). Then, by using exponential type transformations,
these convection—-diffusion equations are transformed into two modified Helmholtz equations. The DBEM is then used to
transform these equations into equivalent integral equations by employing the fundamental solution of either steady-state
convection-diffusion or modified Helmholtz equations, respectively. It is observed that the DBEM with the fundamental
solution of convection-diffusion equation gives more accurate results compared to the use of fundamental solution of
modified Helmholtz equation. The DRBEM technique is also performed to solve the transient MHD flow equations by using
fundamental solution of convection-diffusion equation and the results are compared with the ones obtained by DBEM. The
difference between the applications of DBEM and DRBEM is the treatment of the leftover domain integral due to the time
derivative term. That is, the domain integral is kept and evaluated by numerical integration in DBEM while in DRBEM it is
transformed into an equivalent integral defined only on the boundary of the duct. The effect of the perturbed upper boundary
on the velocity and induced magnetic field is studied in detail. The results are presented by equivelocity and current lines
for several values of Hartmann number, the boundary perturbation parameters and the boundary perturbation functions.

2. The mathematical formulation of the problem

The unsteady MHD flow equations which are coupled in the velocity V(x, y) and induced magnetic field B(x, y), are given
in non-dimensional form as [1]

) oB av
VV4+M— = —14 —
ay at
in £ (1)
5 Vv dB
VB+M— = —
ay at
with the no-slip velocity boundary conditions V. = 0 on I" (boundary of the domain £2). The side walls are taken to be
insulated (B = 0), while the Hartmann walls are perfectly conducting (% = 0). Here, Hartmann number M is defined by

M = Bolg/o/ /11, Where Ly is the characteristic length, By is the intensity of the applied magnetic field, o and y are the
electrical conductivity and the coefficient of viscosity of the fluid, respectively. The upper wall of the duct is perturbed as
shown in Fig. 1, [17]. Thus, the duct domain 2 is

2={xy)eR>:—c<x<c,—1<y<1—¢gf(x)} (2)

where ¢ is the perturbation parameter arbitrarily small (0 < & <« 1), while f is assumed to be an arbitrary smooth
perturbation function and c is a constant.
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Fig. 1. Cross-section of a perturbed duct with boundary conditions.

Egs. (1) are decoupled into two convection-diffusion equations given as

8w1 8w1
Viw; +M =-1+— 3
1+ 3y + ot (3)
in £
awz 3UJ2
Viw, — M =14 —= 4
wp 3y + " (4)
by defining w; = V + Band w,; = V — B. Then, the corresponding boundary conditions become
For insulated walls : w; =0, wy =0, (5)
a a
For perfectly conducting walls : w; = —wy, 2 _ ﬂ.
an an

The resulting convection-diffusion equations (3)-(4) can be further transformed into two transient modified Helmholtz
equations

2

M 8u1
Vi — —uy = —exp(=1y) + — 6
Ty P(Z T+ ¢ (6)
in £
M? M uy
Vit = e = —expl- )+ G0 @)

by using the exponential type transformation u; = exp(%ry)wl and u; = exp(—%ry)wz. Here, r is the magnitude of the
position vector 7 = (ry, ry) between the source and field points. The corresponding boundary conditions are

For insulated walls : u; =0,  u, =0, (8)
For perfectly conducting walls : u, = — exp(—Mry)uy,
duy ouq
= exp(—Mr,)—.
an Xp(=Mry) an

It is noticed that, while the original MHD equations (1) are decoupled as transient convection-diffusion equations (3)-(4)
or modified Helmholtz equations (6)-(7) the corresponding boundary conditions are coupled as given in Egs. (5) and (8),
respectively. The original unknowns V and B can be obtained by using back substitutions

1 1
V= §(w1 +wz), B= 5(w1 — wy) 9)

for the system of convection-diffusion type equations (3)-(4) and
1 M M
V = E[eXP(_Ery)Ul + eXp(?ry)uz], (10)
B = 1[ex( Mr)u ex(Mr)u]
=3 p PR 1 p PR 2

for the system of modified Helmholtz equations (6)-(7).
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3. Numerical methods

The unsteady MHD flow in a duct with a perturbed upper boundary will be solved numerically by the use of two types of
boundary elements method, namely domain BEM and dual reciprocity BEM for the spatial discretization where a backward
finite difference scheme is employed in time integration. Both techniques aim to transform the given differential equations
into equivalent integral equations, which contain a domain integral due to the time derivative, by weighting the equations
with the fundamental solution of the steady convection-diffusion or modified Helmholtz equations. The leftover domain
integral is treated by numerical integration in DBEM while it is further transformed into a boundary integral by means of
radial basis functions in DRBEM as mentioned before. Finally, the resulting DBEM and DRBEM system of first order time-
dependent differential equations is discretized by the use of backward finite difference scheme.

3.1. DBEM formulation

3.1.1. DBEM formulation by using the fundamental solution of convection-diffusion equation
The DBEM is employed to transform the system (3)-(4) into equivalent integral equations by using the fundamental
solution of convection-diffusion equation

*

]
u =1uy

1 M
= — exp(x—r,)Ko(sr 11
2= o p( > y)Ko(sr) (11)
where u7 and uj are fundamental solutions of Egs. (3) and (4), respectively. Here, Ko(sr) is the modified Bessel function of
the second kind and of order zero, and s = % The signs + in Eq. (11) are taken according to the signs given in Egs. (3)-(4).

The normal derivatives of u} and u; are g7 and g3, respectively, and are given by

1 M or 1
*=qi, = —exp(£—ry) | —sKi(sr)— £ =Mn,Ko(sr 12
T =02=7" p( 2y)|: 1( )an 3 Kol )} (12)
where g—; is the derivative of r in the direction of outward normal vector i = (n, ny) to the boundary I'", and Ky(sr) is the
modified Bessel function of the second kind and of order one. Weighting Eqgs. (3) and (4) with u} and u3, respectively, and
applying the Green’s second identity two times [21], one gets

9 9
ciwi+f(q*w—u*—w)dF¢/ Mnyuwdl™ = —/(i‘) —ude (13)

where w denotes w; and w,, u* and g* denote uj, uj and qj, g3, respectively. Here, the coefficient ¢; (— 9—) is a constant

=2
where 6; being the internal angle at the source point i. The domain integrals on the right hand side of Eq. (13) will be kept
in the integral equation and computed numerically [22]. When the boundary of the duct is discretized by using constant

boundary elements, Eq. (13) can be stated as

ad a
Hw — ¢ = —/ iy +/ utde. (14)
an o ot o
The components of H and G matrices are,
1 M ar _ Mn
Hyj = cid + o /;] exp(iiry) |:—sl<1(sr)8n T ZyKO(sr)] dr; (15)
1 M

Gj = — f exp(£—ry)Ko(sr)dT; (16)

and the diagonal entries of H and G are calculated analytically as
Mnyl 2 s
Hii%Ci:FTny(lnT‘i‘l—lni—)/) (17)
Gi~ 21— —p) (18)
B 27

where [ is the length of element, y is Euler constant and § is Kronecker delta function.
Further, the time derivative on the right hand side of Egs. (14) is discretized by using implicit backward difference
approximation
i) kD) _ (k)
~ . (19)
at At

Then, Eq. (14) can be expressed as

1 9 (k+1) 1
(H+ R cai: = R + R (20)
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where Ry is a diagonal matrix which is constructed by taking the components of the vector R = f o U*dS2 as its diagonal
entries at each node and k denotes the time level. The domain integral is computed numerically by using numerical
integration technique. The insertion of boundary conditions results in a system of linear equations, Az = b, where A is a
full matrix with scattered zeros. Once the system is solved, the unknowns w1, w, and 3(;‘;1‘ , ‘9;12 are obtained on the boundary
and in the interior according to given boundary conditions. Finally, the original unknowns V and B are obtained by using the

back substitutions given in Eq. (9).

3.1.2. DBEM formulation by using the fundamental solution of modified Helmholtz equation
By applying the method of weighted residual [21] and employing the following fundamental solution of the modified
Helmholtz equation

*

1
Ut =ul=u; = EKO(sr) (21)

to the system (6)-(7), we obtain the following integral equation

0 d M
ciu,»—i—/ q*udF—/ u*—udl“ = —/ —uu*d9+f exp(£—r,)u*ds2. (22)

Here, q* is given as

ar
* y = ——K sr 23
F=q=q¢= > 1(sT)— ™ (23)
where s = % After the discretization of the boundary with constant elements, we obtain the matrix-vector equations
au M
Hu—G— = —d.Q exp(£—r,)u*ds2 24
e /ﬂ Mo + / P 1) (24)

which corresponds to the solutions u; and u; with 4+ and — signs, respectively. The components of H, G are
Hi=cos— — [ sksnidr. 6= - [ kysrydr (25)
ij — Ci0jj 2T I 1 on Jj» ij = 2 5 0 Jj

when i # j. The diagonal entries of the matrix H are directly equal to ¢, (i.e. H; = ¢;) since g—; = 0 along a constant element
in the integral (25) while the diagonal entries G; are calculated analytically using the formula (18).
The time derivative is again discretized by using implicit backward finite difference which results in

(H+ LYy kD — cai(k+l) — Ly +M (26)
At an At 2

where M, is constructed as a diagonal matrix while M, is a vector. At each node, the diagonal entries of M, and entries of
the vector M, are computed as

M
M, =/ u*ds2, M, =/ exp(£—r,)u*ds2 (27)
2 2 2

by using numerical integration technique as in Section 3.1.1. Insertion of boundary conditions results in a linear system to
be solved iteratively for increasing time levels. To obtain the solution in original unknowns V and B, the back substitutions
given in Eq. (10) are applied.

3.2. DRBEM formulation with the fundamental solution of convection-diffusion equation

Similar to DBEM when the fundamental solution of convection-diffusion equation is employed to Egs. (3)-(4), we end up
with the integral equation (13) which contains a domain integral involving the time derivative. The domain integral on the
right hand side of Eq. (13) involving the nonhomogeneous terms is approximated by using the radial basis function f; which

is linked to the particular solution i; as Vzﬁj +M %’ = f;. Accordingly, this term is approximated by

N+L

——I_Zajt)f]xy (28)

Substituting f; into Eq. (28) and then into Eq. (13) gives

N+L
At
c,w,-—l—/(q w—1u —)dF:F/ Mnyu*wdll = E oj(t /(Vzu,j:M 2 ) *d2 (29)
r y
j=1
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Fig. 2. The steady-state DBEM results withM =5,¢ = 0.1,f = — cos(’%).
Applying Green'’s second identity to the right hand side of Eq. (29) we obtain
Jw N+L
Ciw; + / (q"w — U*%)df :F/ Mnyu*wdl = Zaj(t) [C,‘ﬁji + / (q*t; — u*q;)dr :F/ Mnyu*ﬁjdl“} (30)
r r ; r r
=1

which involves only the boundary integrals where g; = %—“}1’ and «;(t) is a set of time dependent undetermined coefficients,
and N and L are the number of constant boundary elements and arbitrarily selected interior nodes, respectively. Herg, th3e

radial basis functions are takenas f; = (1+7;)=%( % + % )(Mry). Then, the corresponding particular solutions become il; = %—l— %
o

2
. . . A ri T3
with normal derivatives are §; = (3 + 4 )(5.

substituting back into Eq. (30) give

) [23]. The collocation of the right hand side of Eq. (13) at N + L points and

9 e aw -
Hw — ¢ = (HO — GO (22 — 1) 31)
on ot

where F, U, Q are the (N +L) x (N + L) matrices obtained by taking f;, I;, §; as columns, respectively, [21] and 1is the vector
of ones. The components of the matrices H and G and their diagonal entries are the same as given in Egs. (15)-(18). When
the time derivative is discretized by using the implicit backward difference, Eq. (31) becomes

(k+1) c

9 _
el I (32)

C
o Syt _
(H+ 7w an At

where C = —(H U-— GQ)F ~1, The DRBEM discretized system (32) corresponds again to the solutions w; and w, in Egs. (3)
and (4), respectively. Insertion of boundary condition results in a linear system to be solved iteratively for increasing time
levels. To obtain the solution in original variables V and B, the back substitutions given in Eq. (9) is applied as in the DBEM
application.
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Fig. 4. Induced magnetic field profile along the vertical lines x = —1.0 (left), x = 0 (middle) and x = 1.0 (right).
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Fig. 5. Velocity and induced magnetic field along horizontal centerliney = 0, M = 30,¢ = 0.

4. Numerical results and discussions

The unsteady MHD flow equations are solved by both DBEM and DRBEM. DBEM application is given for two types
of fundamental solutions, namely fundamental solution of modified Helmholtz and convection-diffusion equations. The
numerical simulations of DBEM with fundamental solution of convection-diffusion equation are carried out for several
values of perturbation parameter (¢) and Hartmann number (M). Moreover, the effect of Hartmann number is presented
elaborately for the MHD flow with flat walls and also for perturbed upper boundary. And then, DRBEM application with the
fundamental solution of convection-diffusion equation is carried for the ducts with both flat and perturbed walls. Finally,
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Fig. 7. Equivelocity and current lines by DBEM with the fundamental solution of (a) modified Helmholtz, (b) convection-diffusion equations for f =
—cos(3%*),e=01T=1

the effect of perturbation function on the solution is investigated. For all computations, maximum N = 500 and N = 1200
constant boundary elements are used for the highest value of Hartmann number with DBEM and DRBEM, respectively.

The accuracy of the results obtained by DBEM either with the fundamental solution of modified Helmholtz or convection-
diffusion equation is validated by comparing the obtained results with the ones given in the work [17] in terms of surface
plots of velocity V and induced magnetic field B in Fig. 2. In this test problem, the perturbation function is taken as
f = —cos(% X)for e = 0.1 and M = 5. The results are in well agreement with the results given in [17] (see Figure 14
and Figure 18 in [17]). Furthermore, for the same test problem the variation of the velocity and the induced magnetic field
along the vertical lines x = 1.0, 0 are drawn in Figs. 3 and 4, respectively. The agreement of the present results with the
ones given in [17] (see Figures 12,13,16,17 in [17]) is also well observed.

In the rest of the paper, we will focus on the effect of the perturbation function f (= — cos(=3* 27x)) with several perturbation
parameters ¢(= 0, 0.1, 0.3, 0.5) and Hartmann numbers (5 < M < 150) on the flow and the 1nduced magnetic field. In order
to determine when the solution reaches to the steady-state, the velocity and induced magnetic field along the horizontal
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Fig. 8. The effect of ¢ on the velocity with DBEM , when f = — cos( % ), T=1.

centerline (y = 0,0 < x < 2) are drawn in Fig. 5 at a fixed Hartmann number M = 30 and ¢ = O at several time levels
(0.05 < T < 1).1Itis clear that, after T > 0.4 the steady-state is reached for both the velocity and induced magnetic field.

Further, the DBEM solutions with the fundamental solution of convection-diffusion equation are illustrated in Fig. 6 for
transient levels T = 0.05,0.1,0.4, 1 when M = 30, f = — cos(zg—") and ¢ = 0.1. Fig. 6 indicates that, solution reaches the
steady-state when T > 0.4, which is quite compatible with Fig. 5. Thus, all the subsequent graphs are drawn at T = 1 which
is the steady-state level for both the velocity and the induced magnetic field.

First, we consider the effect of the use of different fundamental solutions in the application of DBEM on the velocity and
induced magnetic field. Thus, the steady-state results obtained with the fundamental solution of modified Helmholtz and
the convection-diffusion equations are compared in Fig. 7 in terms of velocity and induced magnetic field when M= 10, 20,
30, 35 by taking f = — cos(zg—") with ¢ = 0.1. For M < 30, both of the fundamental solutions provide the same results
with a good accuracy. However, when M > 30 DBEM with the fundamental solution of modified Helmholtz equation has
difficulties in giving accurate results and some disruptions occur along the perturbed wall while the use of the fundamental
solution of convection-diffusion results in acceptable results. Thus, the subsequent computations are performed by using
DBEM with the fundamental solution of convection-diffusion equation.

The effect of the perturbation parameter ¢ on the velocity and the induced magnetic field is displayed in Figs. 8 and 9,
respectively. It is seen that the magnitude of the induced magnetic field increases with an increase in ¢, whereas there is
a decrease in the velocity when M = 5, 10. When M = 30 the increase rate in the magnitude of induced magnetic field
becomes very small compared to the cases when M = 5,10; and there is almost no change in the velocity. Moreover, the
fluid flows in terms of two eddies close to the side walls. It is well observed that at small values of Hartmann number
(M = 5,10) an additional vortex is formed at the center of the cavity and this vortex moves upwards due to the expansion
of the computational domain with an increase in . A further increase in the Hartmann number results in a retardation in
the fluid flow at the center of the cavity and the fluid flows completely in terms of two side layers weakening the effect of
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Fig. 9. The effect of ¢ on the induced magnetic field with DBEM when f = — cos( % L, T=1.

the perturbation. On the other hand, current lines fill the region due to the perturbed upper boundary obeying its boundary
conditions, and start to form side layers as M increases.

Further, the effect of the Hartmann number on the velocity and the induced magnetic field is presented in Fig. 10 for
a rectangular duct with flat walls and in Fig. 11 for a duct with perturbed upper wall (f = — cos(23ﬂ)), respectively. It is
observed that, as M increases the flow is separated into two vortices near the side walls, the velocity drops and the fluid
becomes stagnant at the center of the duct. Moreover, boundary layer formation is observed on the insulating parts of the
boundary for both the velocity and the induced magnetic field as M increases. As Hartmann number increases to M = 50,
Hartmann layers are developed for the flow, however, with a further increase in M to 150 the Hartmann layers are weakened
and finally vanish. Side layers are also observed for the induced current lines for increasing M.

Moreover, the induced magnetic field is antisymmetric with respect to x-axis and the current lines are perpendicular to
conducting walls as expected. The magnitude of the induced magnetic field increases for each Hartmann number when the
upper wall of the duct is perturbed. On the other hand, a decrease in the velocity is well-observed for moderate values of
M(< 50) in the perturbed duct when compared to the velocity in the duct with regular flat walls. This velocity drop is not
seen for Hartmann number values M > 50 since the flattening flow is the dominating case as M increases.

In addition, DRBEM is also employed to solve the unsteady MHD flow with perturbed boundary by using fundamental
solution of convection-diffusion equation. The results are obtained for several values of Hartmann number, and are
presented in Fig. 12, for rectangular duct both with flat walls and with a perturbed upper wall. The results that we obtain for
rectangular duct with flat walls and with perturbed boundary (with f = — cos(% )) are almost the same with our previous
results based on DBEM. Maximum 900 boundary elements are used in DRBEM for highest value of Hartmann number, while
500 boundary elements are used in DBEM. Thus, DRBEM is in need of using more boundary elements than the DBEM to
achieve accurate results which indicates that the DRBEM is computationally less efficient than DBEM as Hartmann number
increases.
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Fig. 10. Effect of M on equivelocity and current lines in a rectangular duct with flat walls (DBEM).

Finally, we obtain the solution of MHD duct flow in duct with a different shape of upper boundary which is determined by
the perturbation function f. We consider basically two different shapes of upper wall, that is either concave down or concave
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up around vertical centerline of the duct. Fig. 13 shows that the flow is divided into two vortices forming side layers and
becoming stagnant at the center when the upper curve boundary is concave down at its middle part (for f = — cos(%*) and
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f=—cos(5* 27xY). On the other hand when the curved boundary is concave up (i.e.f = cos(27(1—x%))and f = sin(27(1—x2)))
at the mlddle part, the flow covers almost all the duct and the side layer formation is retarded. However, the induced
magnetic field profiles are not altered much in both cases.

5. Conclusion

In this study, the transient MHD flow in a duct with a perturbed upper boundary is solved by DBEM and DRBEM when
the vertical walls are insulated while the horizontal walls are perfectly conducting. It is observed that using DBEM with
fundamental solution of convection-diffusion equation gives more accurate results compared to fundamental solution of
modified Helmholtz equation. Therefore, only fundamental solution of convection-diffusion equation is employed in the
application of DRBEM. An increase in the induced magnetic field is observed for each Hartmann number when the upper
wall of the duct is perturbed while a decrease is seen in the velocity for moderate values of Hartmann number. The effect of
perturbation parameter is well-observed in the velocity profile for small values of Hartmann number. That is, an additional
vortex occurs at the center of the duct and moves towards the perturbed wall with an increase in ¢. For the high values of
Hartmann number no significant difference are observed due to the perturbed wall, since boundary layers are formed and
the flow becomes stagnant at the center of the duct. The present results reveal that the well-known MHD flow characteristics
are very well-captured with both the DBEM and DRBEM for the rectangular duct in flat walls. Moreover, for MHD flow with
perturbed boundary, DBEM gives more accurate results compared to the DRBEM as Hartman number increases.
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