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ÖNSÖZ 

 

 

Bu projede, zamana ba!l" Magnetohidrodinamik (MHD) problemleri, pertürbe edilmi# s"n"ra 

sahip dikdörtgen bir kesitte s"n"r elemanlar" metodu ile çe#itli iletkenlik ko#ullar" için farkl" 

temel çözümler kullan"larak çözülmü# ve elde edilen sonuçlar kar#"la#t"r"lmal" olarak 

verilmi#tir. Magnetohidrodinamik denklemleri, viskoz, s"k"#t"r"lamayan ve elektrik ileten 

s"v"lar"n ak"#" ve manyetik alanlarla aras"ndaki etkile#imin sonucunda ortaya ç"kmaktad"r. 

Proje kapsam"nda, birbirine ba!l" magnetohidrodinamik denklemleri öncelikle uygun 

dönü#ümler kullan"larak birbirinden ba!"ms"z konveksiyon-difüzyon denklemlerine 

dönü#türülüp buna kar#"l"k gelen temel çözümler yard"m"yla bölge integrali içeren s"n"r 

elemanlar" yöntemi ve kar#"l"kl" s"n"r elemanlar" yöntemi ile çözülmü#tür. Ard"ndan, bu 

konveksiyon-difüzyon denklemleri uygun dönü#ümler yard"m"yla modifiye edilmi# Helmholtz 

denklemlerine dönü#türülüp yine kar#"l"k gelen temel çözümler kullan"larak bölge integrali 

içeren s"n"r elemanlar" yöntemi ve kar#"l"kl" s"n"r elemanlar" yöntemi ile çözülmü#tür. 

Pertürbe edilmi# s"n"r"n MHD ak"# ve indüklenmi# manyetik alan üzerindeki etkileri her iki 

yöntemle elde edilmi# ve sonuçlar kar#"la#t"r"lmal" bir #ekilde grafiksel olarak farkl" Hartmann 

say"lar" için gösterilmi#tir. Projenin ç"kt"lar" uluslararas" bir konferansta sunulmu# ve makale 

olarak bas"lm"#t"r. GAP-101-2018-2768 kodlu projemiz ODTÜ Bilimsel Ara#t"rma Projeleri 

Koordinasyon Birimi�nce desteklenmi#tir. 
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                                                                 ÖZET 

 

 

Bu!çal%$mada!viskoz,!s%k%$t%r%lamayan,!elektrikçe iletken!s%v%lar%n!zamana!ba&l%!ak%$% manyetik 

alan etkisinde ve pertürbe!edilmi$!s%n%ra!sahip!dikdörtgen!bir!kesitte!incelenmi$tir.!Kesitin!üst!

duvar%! küçük! bir! pertürbasyon! parametresi! kullan%larak! pertürbe! edilmi$! olup,! bu! $ekilde!

$%k%$t%r%lm%$! damarlardaki! kan! ak%$%n%! canland%rmak! amaçlanm%$t%r.! Problemde,!

magnetohidrodinamik denklemleri h%z!ve!indüklenmi$!manyetik!alan!cinsinden!birbirine!ba&l% 

kuple denklemler olup kesit duvarlar% hareketsizdir!ve!kesitin!yan!duvarlar%!yal%t%lm%$!olup!alt!

ve! üst! duvarlar%! tam! iletkendir.! Bölgenin! ayr%$t%r%lmas%nda,! bölge! integrali! içeren! s%n%r!

elemanlar%! yöntemi! ve! kar$%l%kl%! s%n%r! elemanlar%! yöntemi! kullan%lm%$! ve! zaman%n!

ayr%$t%r%lmas%nda! geri! sonlu! fark! $emas%! kullan%lm%$t%r.! Birbirine! ba&l%! kuple! olan!

magnetohidrodinamik denklemleri! ilk! olarak! uygun! dönü$ümler! kullan%larak! birbirinden!

ba&%ms%z! konveksiyon-difüzyon! denklemlerine! dönü$türülmü$,! ard%ndan da üstel! formda!bir!

dönü$üm yard%m%yla! modifiye! edilmi$! Helmholtz! denklemlerine! dönü$türülmü$tür.! Böylece 

olu$an! denklemler! kar$%l%k! gelen! temel! çözümler! kullan%larak! bölge! integrali! içeren! s%n%r!

elemanlar%!yöntemi!ve!kar$%l%kl%!s%n%r!elemanlar%!yöntemi!ile!çözülmü$tür. Her!iki!yöntemle!de!

elde! edilen! sonuçlar! kararl%! halde,! farkl%! Hartmann! say%! de&erleri! ve! farkl%! pertürbasyon!

parametreleri!cinsinden!kar$%la$t%r%lm%$t%r. 
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                                                           ABSTRACT 

 

 

The unsteady  magnetohydrodynamic (MHD) flow of a viscous, incompressible and 

electrically conducting fluid in a rectangular duct with a perturbed boundary, is investigated. 

A small boundary perturbation is applied on the upper wall of the duct which is encountered 

in the visualization of the blood flow in constricted arteries. The MHD equations which are 

coupled in the velocity and the induced magnetic field are solved with no-slip velocity 

conditions and by taking the side walls as insulated and the Hartmann walls as perfectly 

conducting. Both the domain boundary element method (DBEM) and the dual reciprocity 

boundary element method (DRBEM) are used in spatial discretization with a backward finite 

difference scheme for the time integration. These MHD equations are decoupled first into two 

transient convection-diffusion equations, and then into two modified Helmholtz equations by 

using suitable transformations. Then, the DBEM or DRBEM is used to transform these 

equations into equivalent integral equations by employing the fundamental solution of either 

steady-state convection-diffusion or modified Helmholtz equations. The DBEM and DRBEM 

results are presented and compared by equi-velocity and current lines at steady-state for 

several values of Hartmann number and the boundary perturbation parameter. 
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PROJE ANA METN$ 

 

 

Bu!projede,!zamana!ba&l%!Magnetohidrodinamik!(MHD)!problemleri,!pertürbe!edilmi$!s%n%ra!

sahip!dikdörtgen!bir!kesitte! s%n%r! elemanlar%!metodu! ile!çe$itli! iletkenlik!ko$ullar%! için! farkl%!

temel çözümler! kullan%larak! çözülmü$ ve! elde! edilen! sonuçlar! kar$%la$t%r%lmal%! olarak!

verilmi$tir. Magnetohidrodinamik! denklemleri,! viskoz,! s%k%$t%r%lamayan! ve! elektrik! ileten!

s%v%lar%n!ak%$%!ve!manyetik!alanlarla!aras%ndaki!etkile$imin!sonucunda!ortaya!ç%kmaktad%r.!Bu!

tip! denklemler,! jeotermal! enerji! elde! edilmesi,! s%v%! metal! üretimi! ve! nükleer! füzyon! gibi 

endüstriyel! alanlarda! uygulamalara! sahiptir.! Bu! denklemler! için! teorik! çözüm! sadece!

problemin! basitle$tirilmi$! formlar%nda! mevcuttur.! Ancak! bu! basitle$tirme! gerçek! uygulama!

alanlar%ndaki!problemleri!tam!anlam%yla!irdeleyememektedir.!Dolay%s%yla!bu!problemin!gerçek!

anlamda incelenebilmesi!için!efektif!nümerik!metotlara!ihtiyaç!duyulmaktad%r.  

 

Magnetohidrodinamik problemlerinin! çözümleri! için! literatürde! ço&unlukla! sonlu elemanlar 

metodu ve kar$%l%kl%!s%n%r!elemanlar%!metotlar%!kullan%lm%$t%r.!!Mevcut!olan!çözümlerde!bölge!

genellikle! dikdörtgen,! kare! ya da! silindir! olup! düz! s%n%rlara! sahiptir.! Yap%lan! çal%$malar%n!

ekserisi! zamandan! ba&%ms%z! olup,! zamana! ba&l%! olarak! çal%$%lan! kar$%l%kl%! s%n%r! elemanlar%!

yönteminde! ise!yaln%zca!küçük!Hartmann!de&erleri! incelenebilmi$tir.! !Bu!proje!çal%$mas%nda!

hem!zamana!ba&l%!MHD!problemi!hem!de!pertürbe!edilmi$!s%n%r%!olan!bölgede!elde!edilen!h%z!

ve!indüklenmi$!manyetik!alan%n!davran%$!de&i$iklikleri!fiziksel!olarak!incelenmi$tir.  

 

Birbirine! ba&l%! kuple! olan! magnetohidrodinamik! denklemleri! ilk! olarak! uygun! dönü$ümler!

kullan%larak! birbirinden! ba&%ms%z! konveksiyon-difüzyon! denklemlerine! dönü$türülmü$tür! ve!

bu! s%n%r! ko$ullar%n%n! birbirlerine! ba&%ml%! hale! gelmesine! neden! olmu$tur. Ard%ndan,! bu!

konveksiyon-difüzyon!denklemleri!uygun!dönü$ümler!yard%m%yla!modifiye!edilmi$!Helmholtz 

denklemlerine indirgenmi$tir. Konveksiyon-difüzyon! denklemleri, kar$%l%k! gelen! temel!

çözümler! yard%m%yla! bölge! integrali! içeren! s%n%r! elemanlar%! yöntemi! ile! nümerik! olarak!

çözülmü$! ve modifiye! edilmi$! Helmholtz! denklemleri! de! ayn%! $ekilde! kar$%l%k! gelen temel 

çözümler!kullan%larak!bölge!integrali!içeren!s%n%r!elemanlar%!yöntemi!ile!nümerik!olarak! 
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çözülmü$tür.!Elde!edilen!çözümler!kar$%la$t%r%lm%$!ve!anla$%lm%$t%r!ki!konveksiyon-difüzyon! 

temel!çözümü!ile!elde!edilen!sonuçlar!daha!ba$ar%l%d%r.!Bu!sebeple!çal%$man%n!devam%nda!ele!

al%nan!uygulama!problemlerinde!bu!temel!çözüm!kullan%lm%$t%r. 

 

Elde edilen nümerik! çözümler literatürde mevcut! olan! sonuçlar! ile! kar$%la$t%r%lm%$! ve!

birbirleriyle büyük!bir!uyum!içinde!olduklar%!gözlenmi$tir.!Nümerik!çözümler!elde!edilirken!

T=1 zaman%nda!çözümlerin!kararl%!hale!ula$t%&%!gözlenmi$!ve!ilgili!grafiklerle!desteklenmi$tir.!

Bu! sebeple! çal%$madaki! tüm! nümerik! hesaplamalar T=1 zaman%nda! yap%lm%$t%r.! Farkl%!

pertürbasyon!parametreleri! için!analizler yap%lm%$!ve!pertürbasyon!katsay%s%!büyüdükçe!h%z%n!

azald%&%,! indüklenmi$! manyetik! alan%n! ise! artt%&%! gözlenmi$tir.! Hartmann! say%s%n%n! pertürbe!

edilmi$!üst!duvara!sahip!kesit!içerisindeki etkisini!net!olarak!gözlemleyebilmek!için!öncelikle!

farkl%! Hartmann say%! de&erleri! için! düzgün! s%n%rlara! sahip! kesit problemi! incelenmi$! daha!

sonra! pertürbe! edilmi$! yüzeye! sahip! problem! için! ayn%! Hartmann! de&erleri! incelenmi$tir.!

Görülmü$tür!ki!küçük!Hartmann!de&erleri! için!h%z!pertürbe!edilmi$!yüzeyli!problemde!daha!

küçük! iken!Hartmann!de&eri! artt%kça! aradaki! fark!yok!olmu$tur.! "ndüklenmi$!manyetik! alan!

ise!pertürbe!edilmi$!yüzeyli!problemde!tüm!Hartmann!de&erleri!için!daha!büyük!ç%km%$t%r.!Son!

olarak,! kar$%l%kl%! s%n%r! elemanlar%! metodu! ile! konveksiyon-difüzyon! temel! çözümleri!

kullan%larak!düzgün!yüzeye!ve!pertürbe!edilmi$!yüzeye!sahip!magnetohidrodinamik!problemi!

çözülmü$tür.! Farkl%! Hartmann! de&erleri! için! yap%lan! incelemede! bölge! integrali! içeren! s%n%r!

de&er!problemi!ile!benzer!sonuçlar!elde!edilmi$tir.! 

 

 

Projenin!öneri!a$amas%nda: 

 

$lk alt" ayl"k dönemde: zamana! ba&l%! magnetohidrodinamik! probleminin! pertürbe! edilmi$!

yüzeye!sahip!dikdörtgen!kesitli!kanalda!de&i$ik!iletkenlik!ko$ullar%!için!bölge!integrali!içeren!

s%n%r!elemanlar%!yöntemi!ile!farkl%!temel!çözümlerin!kullan%ld%&%!durumlar!için!bilgisayar!kodu!

yaz%laca&%!ve!elde edilen sonuçlar%n!grafiksel olarak sunulaca&% 
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$kinci alt" ayl"k dönemde: ayn%!problem!için!kar$%l%kl%!s%n%r!elemanlar%!yöntemi!tan%mlanarak! 

ilgili bilgisayar kodunun!yaz%laca&%!ve!her!iki!metot!ile!elde!edilen!sonuçlar%n!kar$%la$t%r%lmal%!

olarak!verilece&i! 

 

taahhüt! edilmi$ti. Yap%lan! çal%$malar! sonucu! proje! önerisinde! belirtilen! taahhütlerin! tümü!

yerine! getirilmi$! olup elde! edilen! sonuçlar! ayr%nt%l%! olarak! incelenip! yorumlanm%$t%r.! Proje 

ç%kt%s%!olarak!yay%nlanan!makalemizde!proje!konusu,!literatür!taramas%,!kullan%lan!metotlar!ve!

probleme! uygulan%$lar%,! ve! elde! edilen! sonuçlar! ayr%nt%l%! olarak! verilmi$tir.! Makalemiz! bu 

rapora!eklenmi$tir. 
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a b s t r a c t

The unsteady magnetohydrodynamic (MHD) flow of a viscous, incompressible and electri-
cally conducting fluid in a rectangular duct with a perturbed boundary, is investigated.
A small boundary perturbation ε is applied on the upper wall of the duct which is en-
countered in the visualization of the blood flow in constricted arteries. TheMHD equations
which are coupled in the velocity and the induced magnetic field are solved with no-slip
velocity conditions and by taking the side walls as insulated and the Hartmann walls as
perfectly conducting. Both the domain boundary element method (DBEM) and the dual
reciprocity boundary element method (DRBEM) are used in spatial discretization with
a backward finite difference scheme for the time integration. These MHD equations are
decoupled first into two transient convection–diffusion equations, and then into twomod-
ified Helmholtz equations by using suitable transformations. Then, the DBEM or DRBEM
is used to transform these equations into equivalent integral equations by employing the
fundamental solution of either steady-state convection–diffusion or modified Helmholtz
equations. The DBEM and DRBEM results are presented and compared by equi-velocity
and current lines at steady-state for several values of Hartmann number and the boundary
perturbation parameter.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Magnetohydrodynamics (MHD) studies themotion of electrically conducting fluids in the presence ofmagnetic fields. The
magnetic field influences the fluid motion which is expressed mathematically by including the electromagnetic force in the
equations of motion. The interaction between the external magnetic field and fluid motion gives rise to induced magnetic
field through Ohm’s law. The governing equations of MHD flow are the Navier–Stokes equations of fluid dynamics and
Maxwell’s equations of electromagnetism.MHDhaswide range of engineering applications such asMHDgenerators, pumps,
accelerators, blood flow measurements, power generation, geothermal energy extraction, producing liquid metals, nuclear
fusion. Coupling of these equations, however, leaves analytical solutions available for only simple cases [1–3]. Therefore it
is important to develop efficient numerical techniques to obtain approximate solutions for the MHD flow problems.

Many researchers have investigated the MHD flow problem using several numerical methods. Steady flows have been
studied widely compared to the transient MHD flows in regular domains like rectangular/triangular ducts with straight
boundaries (e.g. [4–6]) and in complex geometries like annular-like domains in [7]. However, here we will focus on only
the papers that provide solution to time-dependent MHD flows. The unsteady MHD flow equations have been studied
using the finite element method (FEM) in two-dimensional rectangular, circular and triangular pipes by Singh and Lal [8].
They observed that when the wall conductivity and Hartmann number increase, the flux through a section is reduced and
the steady-state is approached at a faster rate. Salah et al. [9] developed a solution algorithm for the three-dimensional
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coupled MHD flow. This method is valid for both high and low magnetic Reynolds numbers. Seungsoo and Dulikravich [10]
gave a finite difference method (FDM) for three-dimensional unsteady MHD flow in a rectangular channel along with a
temperature variation. Additionally, Sheu and Lin [11] proposed convection–diffusion-reaction model for solving unsteady
MHD flow with a FDM on non-staggered grids using a transport scheme in each ADI spatial sweep. Their results are in
good agreement with the analytical solutions and show high rate of convergence. Some meshless methods have also been
proposed for solving MHD flow equations in channels of different cross-sections and for arbitrary wall conductivities.
Dehghan and Mirzaei [12,13], and Loukopoulos et al. [14], presented meshless local boundary integral equation method,
meshless Local Petrov Galerkin method and localized meshless point collocation method, respectively, for solving unsteady
MHD flow equations. A numerical scheme which is a combination of the dual reciprocity BEM (DRBEM) for space and the
differential quadrature method (DQM) for the time discretization, is proposed by Bozkaya and Tezer-Sezgin [15] for the
solution of unsteady MHD flow problem in a regular rectangular duct with insulated walls. Thus, the solution was obtained
at any required time level without the need of step-by-step computation with respect to time. For the unsteady MHD flow
in a duct with arbitrary wall conductivity, the BEM formulation with time-dependent fundamental solution is presented by
Bozkaya and Tezer-Sezgin [16] and the numerical solutions are obtained for higher values of Hartmann numbers compared
to previous studies.

Concerning the solution of the unsteady MHD flow equations, two BEM formulations namely DBEM and DRBEM are
presented in this paper. The use of the DBEM with different fundamental solutions as a tool for the solution of the MHD
flow equations is the main contribution of this paper. The time-dependent MHD flow in a rectangular duct with a perturbed
boundary subject to an external magnetic field is considered as a physically challenging problem but studied very rarely. The
effect of boundary perturbation on the fluid flow has been given in the work of Mahabaleshwar et al. [17] and for the steady
MHD flow, in the study of Marušić-Paloka and Pažanin [18] for the Darcy–Brinkman flow and for incompressible viscous
flow by Jäger [19]. In the work of Aydın and Tezer-Sezgin [20], the MHD flow direct and Cauchy problems in a rectangular
duct with a perturbed slipping upper boundary are solved asymptotically by the use of dual reciprocity BEM to recover
the slip length on the perturbed boundary through the slip boundary conditions for relatively small values of Hartmann
number. Thus, a small boundary perturbation of magnitude ε is applied on the upper Hartmann wall of the duct in the
present study. The walls parallel to applied magnetic field (side walls) are taken to be insulated while the perpendicular
walls (Hartmann walls) are perfectly conducting with the assumption of no-slip velocity conditions on the duct walls. The
convection–diffusion type coupledMHDequations are decoupled first into two transient convection–diffusion equations but
it makes the boundary conditions coupled (for perfectly conductingwalls). Then, by using exponential type transformations,
these convection–diffusion equations are transformed into two modified Helmholtz equations. The DBEM is then used to
transform these equations into equivalent integral equations by employing the fundamental solution of either steady-state
convection–diffusion or modified Helmholtz equations, respectively. It is observed that the DBEM with the fundamental
solution of convection–diffusion equation gives more accurate results compared to the use of fundamental solution of
modified Helmholtz equation. The DRBEM technique is also performed to solve the transient MHD flow equations by using
fundamental solution of convection–diffusion equation and the results are compared with the ones obtained by DBEM. The
difference between the applications of DBEM and DRBEM is the treatment of the leftover domain integral due to the time
derivative term. That is, the domain integral is kept and evaluated by numerical integration in DBEM while in DRBEM it is
transformed into an equivalent integral defined only on the boundary of the duct. The effect of the perturbed upper boundary
on the velocity and induced magnetic field is studied in detail. The results are presented by equivelocity and current lines
for several values of Hartmann number, the boundary perturbation parameters and the boundary perturbation functions.

2. The mathematical formulation of the problem

The unsteady MHD flow equations which are coupled in the velocity V (x, y) and induced magnetic field B(x, y), are given
in non-dimensional form as [1]

∇2V + M
∂B

∂y
= −1 + ∂V

∂t

in Ω (1)

∇2B + M
∂V

∂y
= ∂B

∂t

with the no-slip velocity boundary conditions V = 0 on Γ (boundary of the domain Ω). The side walls are taken to be
insulated (B = 0), while the Hartmann walls are perfectly conducting ( ∂B

∂n
= 0). Here, Hartmann number M is defined by

M = B0L0
√

σ/
√

µ, where L0 is the characteristic length, B0 is the intensity of the applied magnetic field, σ and µ are the
electrical conductivity and the coefficient of viscosity of the fluid, respectively. The upper wall of the duct is perturbed as
shown in Fig. 1, [17]. Thus, the duct domain Ω is

Ω = {(x, y) ∈ R
2 : −c < x < c, −1 < y < 1 − εf (x)} (2)

where ε is the perturbation parameter arbitrarily small (0 < ε ≪ 1), while f is assumed to be an arbitrary smooth
perturbation function and c is a constant.
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Fig. 1. Cross-section of a perturbed duct with boundary conditions.

Eqs. (1) are decoupled into two convection–diffusion equations given as

∇2w1 + M
∂w1

∂y
= −1 + ∂w1

∂t
(3)

in Ω

∇2w2 − M
∂w2

∂y
= −1 + ∂w2

∂t
(4)

by defining w1 = V + B and w2 = V − B. Then, the corresponding boundary conditions become

For insulated walls : w1 = 0, w2 = 0, (5)

For perfectly conducting walls : w2 = −w1,
∂w2

∂n
= ∂w1

∂n
.

The resulting convection–diffusion equations (3)–(4) can be further transformed into two transient modified Helmholtz

equations

∇2u1 − M2

4
u1 = − exp(

M

2
ry) + ∂u1

∂t
(6)

in Ω

∇2u2 − M2

4
u2 = − exp(−M

2
ry) + ∂u2

∂t
(7)

by using the exponential type transformation u1 = exp(M
2
ry)w1 and u2 = exp(−M

2
ry)w2. Here, r is the magnitude of the

position vector r⃗ = (rx, ry) between the source and field points. The corresponding boundary conditions are

For insulated walls : u1 = 0, u2 = 0, (8)

For perfectly conducting walls : u2 = − exp(−Mry)u1,

∂u2

∂n
= exp(−Mry)

∂u1

∂n
.

It is noticed that, while the original MHD equations (1) are decoupled as transient convection–diffusion equations (3)–(4)

or modified Helmholtz equations (6)–(7) the corresponding boundary conditions are coupled as given in Eqs. (5) and (8),

respectively. The original unknowns V and B can be obtained by using back substitutions

V = 1

2
(w1 + w2), B = 1

2
(w1 − w2) (9)

for the system of convection–diffusion type equations (3)–(4) and

V = 1

2
[exp(−M

2
ry)u1 + exp(

M

2
ry)u2], (10)

B = 1

2
[exp(−M

2
ry)u1 − exp(

M

2
ry)u2]

for the system of modified Helmholtz equations (6)–(7).
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3. Numerical methods

The unsteady MHD flow in a duct with a perturbed upper boundary will be solved numerically by the use of two types of
boundary elements method, namely domain BEM and dual reciprocity BEM for the spatial discretization where a backward
finite difference scheme is employed in time integration. Both techniques aim to transform the given differential equations
into equivalent integral equations, which contain a domain integral due to the time derivative, by weighting the equations
with the fundamental solution of the steady convection–diffusion or modified Helmholtz equations. The leftover domain
integral is treated by numerical integration in DBEM while it is further transformed into a boundary integral by means of
radial basis functions in DRBEM as mentioned before. Finally, the resulting DBEM and DRBEM system of first order time-
dependent differential equations is discretized by the use of backward finite difference scheme.

3.1. DBEM formulation

3.1.1. DBEM formulation by using the fundamental solution of convection–diffusion equation

The DBEM is employed to transform the system (3)–(4) into equivalent integral equations by using the fundamental
solution of convection–diffusion equation

u∗ = u∗
1,2 = 1

2π
exp(±M

2
ry)K0(sr) (11)

where u∗
1 and u∗

2 are fundamental solutions of Eqs. (3) and (4), respectively. Here, K0(sr) is the modified Bessel function of

the second kind and of order zero, and s = M
2
. The signs ± in Eq. (11) are taken according to the signs given in Eqs. (3)–(4).

The normal derivatives of u∗
1 and u∗

2 are q∗
1 and q∗

2, respectively, and are given by

q∗ = q∗
1,2 = 1

2π
exp(±M

2
ry)

[

−sK1(sr)
∂r

∂n
± 1

2
MnyK0(sr)

]

(12)

where ∂r
∂n

is the derivative of r in the direction of outward normal vector n⃗ = (nx, ny) to the boundary Γ , and K1(sr) is the
modified Bessel function of the second kind and of order one. Weighting Eqs. (3) and (4) with u∗

1 and u∗
2, respectively, and

applying the Green’s second identity two times [21], one gets

ciwi +
∫

Γ

(q∗w − u∗ ∂w

∂n
)dΓ ∓

∫

Γ

Mnyu
∗wdΓ = −

∫

Ω

(
∂w

∂t
− 1)u∗dΩ (13)

where w denotes w1 and w2, u
∗ and q∗ denote u∗

1, u
∗
2 and q∗

1, q
∗
2, respectively. Here, the coefficient ci

(

= θi
2π

)

is a constant

where θi being the internal angle at the source point i. The domain integrals on the right hand side of Eq. (13) will be kept
in the integral equation and computed numerically [22]. When the boundary of the duct is discretized by using constant
boundary elements, Eq. (13) can be stated as

Hw − G
∂w

∂n
= −

∫

Ω

u∗ ∂w

∂t
dΩ +

∫

Ω

u∗dΩ. (14)

The components of H and G matrices are,

Hij = ciδij +
1

2π

∫

Γj

exp(±M

2
ry)

[

−sK1(sr)
∂r

∂n
∓ Mny

2
K0(sr)

]

dΓj (15)

Gij = 1

2π

∫

Γj

exp(±M

2
ry)K0(sr)dΓj (16)

and the diagonal entries of H and G are calculated analytically as

Hii ≈ ci ∓
Mnyl

4π
(ln

2

l
+ 1 − ln

s

2
− γ ) (17)

Gii ≈ l

2π
(ln

2

l
+ 1 − ln

s

2
− γ ) (18)

where l is the length of element, γ is Euler constant and δ is Kronecker delta function.
Further, the time derivative on the right hand side of Eqs. (14) is discretized by using implicit backward difference

approximation

∂w(k+1)

∂t
≈ w(k+1) − w(k)

∆t
. (19)

Then, Eq. (14) can be expressed as

(H + 1

∆t
R)w(k+1) − G

∂w

∂n

(k+1)

= 1

∆t
Rdw

(k) + R (20)
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where Rd is a diagonal matrix which is constructed by taking the components of the vector R =
∫

Ω
u∗dΩ as its diagonal

entries at each node and k denotes the time level. The domain integral is computed numerically by using numerical

integration technique. The insertion of boundary conditions results in a system of linear equations, Az = b, where A is a
full matrix with scattered zeros. Once the system is solved, the unknownsw1,w2 and

∂w1
∂n

,
∂w2
∂n

are obtained on the boundary

and in the interior according to given boundary conditions. Finally, the original unknowns V and B are obtained by using the

back substitutions given in Eq. (9).

3.1.2. DBEM formulation by using the fundamental solution of modified Helmholtz equation

By applying the method of weighted residual [21] and employing the following fundamental solution of the modified

Helmholtz equation

u∗ = u∗
1 = u∗

2 = 1

2π
K0(sr) (21)

to the system (6)–(7), we obtain the following integral equation

ciui +
∫

Γ

q∗udΓ −
∫

Γ

u∗ ∂u

∂n
dΓ = −

∫

Ω

∂u

∂t
u∗dΩ +

∫

Ω

exp(±M

2
ry)u

∗dΩ. (22)

Here, q∗ is given as

q∗ = q∗
1 = q∗

2 = − s

2π
K1(sr)

∂r

∂n
(23)

where s = M
2
. After the discretization of the boundary with constant elements, we obtain the matrix–vector equations

Hu − G
∂u

∂n
= −

∫

Ω

u∗ ∂u

∂t
dΩ +

∫

Ω

exp(±M

2
ry)u

∗dΩ (24)

which corresponds to the solutions u1 and u2 with + and − signs, respectively. The components of H , G are

Hij = ciδij −
1

2π

∫

Γj

sK1(sr)
∂r

∂n
dΓj, Gij = 1

2π

∫

Γj

K0(sr)dΓj (25)

when i ̸= j. The diagonal entries of the matrix H are directly equal to ci, (i.e. Hii = ci) since
∂r
∂n

= 0 along a constant element

in the integral (25) while the diagonal entries Gii are calculated analytically using the formula (18).

The time derivative is again discretized by using implicit backward finite difference which results in

(H + 1

∆t
M1)u

(k+1) − G
∂u

∂n

(k+1)

= 1

∆t
M1u

(k) + M2 (26)

where M1 is constructed as a diagonal matrix while M2 is a vector. At each node, the diagonal entries of M1 and entries of

the vectorM2 are computed as

M1 =
∫

Ω

u∗dΩ, M2 =
∫

Ω

exp(±M

2
ry)u

∗dΩ (27)

by using numerical integration technique as in Section 3.1.1. Insertion of boundary conditions results in a linear system to

be solved iteratively for increasing time levels. To obtain the solution in original unknowns V and B, the back substitutions

given in Eq. (10) are applied.

3.2. DRBEM formulation with the fundamental solution of convection–diffusion equation

Similar to DBEMwhen the fundamental solution of convection–diffusion equation is employed to Eqs. (3)–(4), we end up

with the integral equation (13) which contains a domain integral involving the time derivative. The domain integral on the

right hand side of Eq. (13) involving the nonhomogeneous terms is approximated by using the radial basis function fj which

is linked to the particular solution ûj as ∇2ûj ± M
∂ ûj

∂y
= fj. Accordingly, this term is approximated by

∂w

∂t
− 1 =

N+L
∑

j=1

αj(t)fj(x, y). (28)

Substituting fj into Eq. (28) and then into Eq. (13) gives

ciwi +
∫

Γ

(q∗w − u∗ ∂w

∂n
)dΓ ∓

∫

Γ

Mnyu
∗wdΓ = −

N+L
∑

j=1

αj(t)

∫

Ω

(∇2ûj ± M
∂ ûj

∂y
)u∗dΩ (29)
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Fig. 2. The steady-state DBEM results withM = 5, ε = 0.1, f = − cos( πx
4
).

Applying Green’s second identity to the right hand side of Eq. (29) we obtain

ciwi +
∫

Γ

(q∗w − u∗ ∂w

∂n
)dΓ ∓

∫

Γ

Mnyu
∗wdΓ =

N+L
∑

j=1

αj(t)

[

ciûji +
∫

Γ

(q∗ûj − u∗q̂j)dΓ ∓
∫

Γ

Mnyu
∗ûjdΓ

]

(30)

which involves only the boundary integrals where q̂j = ∂ ûj

∂n
and αj(t) is a set of time dependent undetermined coefficients,

and N and L are the number of constant boundary elements and arbitrarily selected interior nodes, respectively. Here, the

radial basis functions are taken as fj = (1+rj)±( 1
2
+ rj

3
)(Mry). Then, the correspondingparticular solutions become ûj = r2

j

4
+ r3

j

9

with normal derivatives are q̂j = (
rj

2
+ r2

j

3
)(

∂rj

∂n
) [23]. The collocation of the right hand side of Eq. (13) at N + L points and

substituting back into Eq. (30) give

Hw − G
∂w

∂n
= (HÛ − GQ̂ )F−1(

∂w

∂t
− 1̄) (31)

where F , Û , Q̂ are the (N + L)× (N + L) matrices obtained by taking fj, ûj, q̂j as columns, respectively, [21] and 1̄ is the vector

of ones. The components of the matrices H and G and their diagonal entries are the same as given in Eqs. (15)–(18). When

the time derivative is discretized by using the implicit backward difference, Eq. (31) becomes

(H + C

∆t
)w(k+1) − G

∂w

∂n

(k+1)

= C

∆t
w(k) + C 1̄ (32)

where C = −(HÛ − GQ̂ )F−1. The DRBEM discretized system (32) corresponds again to the solutions w1 and w2 in Eqs. (3)

and (4), respectively. Insertion of boundary condition results in a linear system to be solved iteratively for increasing time

levels. To obtain the solution in original variables V and B, the back substitutions given in Eq. (9) is applied as in the DBEM

application.
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Fig. 3. Velocity profile along the vertical lines x = −1.0 (left), x = 0 (middle) and x = 1.0 (right).

Fig. 4. Induced magnetic field profile along the vertical lines x = −1.0 (left), x = 0 (middle) and x = 1.0 (right).

Fig. 5. Velocity and induced magnetic field along horizontal centerline y = 0,M = 30, ε = 0.

4. Numerical results and discussions

The unsteady MHD flow equations are solved by both DBEM and DRBEM. DBEM application is given for two types

of fundamental solutions, namely fundamental solution of modified Helmholtz and convection–diffusion equations. The

numerical simulations of DBEM with fundamental solution of convection–diffusion equation are carried out for several

values of perturbation parameter (ε) and Hartmann number (M). Moreover, the effect of Hartmann number is presented

elaborately for the MHD flow with flat walls and also for perturbed upper boundary. And then, DRBEM application with the

fundamental solution of convection–diffusion equation is carried for the ducts with both flat and perturbed walls. Finally,
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0

Fig. 6. Time evolutions of velocity and induced current forM = 30, f = − cos( 2πx
3

) and ε = 0.1.

Fig. 7. Equivelocity and current lines by DBEM with the fundamental solution of (a) modified Helmholtz, (b) convection–diffusion equations for f =
− cos( 2πx

3
), ε = 0.1, T = 1.

the effect of perturbation function on the solution is investigated. For all computations, maximum N = 500 and N = 1200

constant boundary elements are used for the highest value of Hartmann number with DBEM and DRBEM, respectively.

The accuracy of the results obtained byDBEMeitherwith the fundamental solution ofmodifiedHelmholtz or convection–

diffusion equation is validated by comparing the obtained results with the ones given in the work [17] in terms of surface

plots of velocity V and induced magnetic field B in Fig. 2. In this test problem, the perturbation function is taken as

f = − cos( πx
4
) for ε = 0.1 and M = 5. The results are in well agreement with the results given in [17] (see Figure 14

and Figure 18 in [17]). Furthermore, for the same test problem the variation of the velocity and the induced magnetic field

along the vertical lines x = ∓1.0, 0 are drawn in Figs. 3 and 4, respectively. The agreement of the present results with the

ones given in [17] (see Figures 12,13,16,17 in [17]) is also well observed.

In the rest of the paper, wewill focus on the effect of the perturbation function f (= − cos( 2πx
3
)) with several perturbation

parameters ε(= 0, 0.1, 0.3, 0.5) andHartmann numbers (5 ≤ M ≤ 150) on the flow and the inducedmagnetic field. In order

to determine when the solution reaches to the steady-state, the velocity and induced magnetic field along the horizontal
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Fig. 8. The effect of ε on the velocity with DBEM , when f = − cos( 2πx
3

), T = 1.

centerline (y = 0, 0 ≤ x ≤ 2) are drawn in Fig. 5 at a fixed Hartmann number M = 30 and ε = 0 at several time levels
(0.05 ≤ T ≤ 1). It is clear that, after T ≥ 0.4 the steady-state is reached for both the velocity and induced magnetic field.

Further, the DBEM solutions with the fundamental solution of convection–diffusion equation are illustrated in Fig. 6 for
transient levels T = 0.05, 0.1, 0.4, 1 when M = 30, f = − cos( 2πx

3
) and ε = 0.1. Fig. 6 indicates that, solution reaches the

steady-state when T ≥ 0.4, which is quite compatible with Fig. 5. Thus, all the subsequent graphs are drawn at T = 1 which
is the steady-state level for both the velocity and the induced magnetic field.

First, we consider the effect of the use of different fundamental solutions in the application of DBEM on the velocity and
induced magnetic field. Thus, the steady-state results obtained with the fundamental solution of modified Helmholtz and
the convection–diffusion equations are compared in Fig. 7 in terms of velocity and induced magnetic field whenM= 10, 20,
30, 35 by taking f = − cos( 2πx

3
) with ε = 0.1. For M ≤ 30, both of the fundamental solutions provide the same results

with a good accuracy. However, when M > 30 DBEM with the fundamental solution of modified Helmholtz equation has
difficulties in giving accurate results and some disruptions occur along the perturbed wall while the use of the fundamental
solution of convection–diffusion results in acceptable results. Thus, the subsequent computations are performed by using
DBEM with the fundamental solution of convection–diffusion equation.

The effect of the perturbation parameter ε on the velocity and the induced magnetic field is displayed in Figs. 8 and 9,
respectively. It is seen that the magnitude of the induced magnetic field increases with an increase in ε, whereas there is
a decrease in the velocity when M = 5, 10. When M = 30 the increase rate in the magnitude of induced magnetic field
becomes very small compared to the cases when M = 5,10; and there is almost no change in the velocity. Moreover, the
fluid flows in terms of two eddies close to the side walls. It is well observed that at small values of Hartmann number
(M = 5,10) an additional vortex is formed at the center of the cavity and this vortex moves upwards due to the expansion
of the computational domain with an increase in ε. A further increase in the Hartmann number results in a retardation in
the fluid flow at the center of the cavity and the fluid flows completely in terms of two side layers weakening the effect of
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Fig. 9. The effect of ε on the induced magnetic field with DBEM when f = − cos( 2πx
3

), T = 1.

the perturbation. On the other hand, current lines fill the region due to the perturbed upper boundary obeying its boundary
conditions, and start to form side layers asM increases.

Further, the effect of the Hartmann number on the velocity and the induced magnetic field is presented in Fig. 10 for
a rectangular duct with flat walls and in Fig. 11 for a duct with perturbed upper wall (f = − cos( 2πx

3
)), respectively. It is

observed that, as M increases the flow is separated into two vortices near the side walls, the velocity drops and the fluid
becomes stagnant at the center of the duct. Moreover, boundary layer formation is observed on the insulating parts of the
boundary for both the velocity and the induced magnetic field as M increases. As Hartmann number increases to M = 50,
Hartmann layers are developed for the flow, however, with a further increase inM to 150 the Hartmann layers areweakened
and finally vanish. Side layers are also observed for the induced current lines for increasingM .

Moreover, the induced magnetic field is antisymmetric with respect to x-axis and the current lines are perpendicular to
conducting walls as expected. The magnitude of the induced magnetic field increases for each Hartmann number when the
upper wall of the duct is perturbed. On the other hand, a decrease in the velocity is well-observed for moderate values of
M(≤ 50) in the perturbed duct when compared to the velocity in the duct with regular flat walls. This velocity drop is not
seen for Hartmann number valuesM > 50 since the flattening flow is the dominating case asM increases.

In addition, DRBEM is also employed to solve the unsteady MHD flow with perturbed boundary by using fundamental
solution of convection–diffusion equation. The results are obtained for several values of Hartmann number, and are
presented in Fig. 12, for rectangular duct both with flat walls and with a perturbed upper wall. The results that we obtain for
rectangular duct with flat walls and with perturbed boundary (with f = − cos( 2πx

3
)) are almost the same with our previous

results based on DBEM. Maximum 900 boundary elements are used in DRBEM for highest value of Hartmann number, while
500 boundary elements are used in DBEM. Thus, DRBEM is in need of using more boundary elements than the DBEM to
achieve accurate results which indicates that the DRBEM is computationally less efficient than DBEM as Hartmann number
increases.
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Fig. 10. Effect of M on equivelocity and current lines in a rectangular duct with flat walls (DBEM).

Finally, we obtain the solution ofMHD duct flow in duct with a different shape of upper boundarywhich is determined by

the perturbation function f . We consider basically two different shapes of upperwall, that is either concave down or concave
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Fig. 11. Effect ofM on equivelocity and current lines in a rectangular duct with perturbed upper wall when f = − cos( 2πx
3

), ε = 0.1, T = 1 (DBEM).

up around vertical centerline of the duct. Fig. 13 shows that the flow is divided into two vortices forming side layers and

becoming stagnant at the center when the upper curve boundary is concave down at its middle part (for f = − cos( πx
4
) and
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Fig. 12. Effect ofM on the equivelocity and current lines in a duct with (a) flat walls, (b) a perturbed upper wall when f = − cos( 2πx
3

), ε = 0.1 (DRBEM).

f = − cos( 2πx
3
)). On the other handwhen the curved boundary is concave up (i.e. f = cos(2π (1−x2)) and f = sin(2π (1−x2)))

at the middle part, the flow covers almost all the duct and the side layer formation is retarded. However, the induced

magnetic field profiles are not altered much in both cases.

5. Conclusion

In this study, the transient MHD flow in a duct with a perturbed upper boundary is solved by DBEM and DRBEM when

the vertical walls are insulated while the horizontal walls are perfectly conducting. It is observed that using DBEM with

fundamental solution of convection–diffusion equation gives more accurate results compared to fundamental solution of

modified Helmholtz equation. Therefore, only fundamental solution of convection–diffusion equation is employed in the

application of DRBEM. An increase in the induced magnetic field is observed for each Hartmann number when the upper

wall of the duct is perturbed while a decrease is seen in the velocity for moderate values of Hartmann number. The effect of

perturbation parameter is well-observed in the velocity profile for small values of Hartmann number. That is, an additional

vortex occurs at the center of the duct and moves towards the perturbed wall with an increase in ε. For the high values of

Hartmann number no significant difference are observed due to the perturbed wall, since boundary layers are formed and

the flow becomes stagnant at the center of the duct. The present results reveal that thewell-knownMHD flow characteristics

are very well-captured with both the DBEM and DRBEM for the rectangular duct in flat walls. Moreover, for MHD flow with

perturbed boundary, DBEM gives more accurate results compared to the DRBEM as Hartman number increases.
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Fig. 13. The effect of perturbation function f on equivelocity and current lines at M = 10, ε = 0.1, T = 1 (DBEM).
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