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ABSTRACT 

 

COMPUTER SIMULATION OF DYNAMIC BEHAVIOR OF PNEUMATIC 

TIRES 

 
Tönük, Ergin 

Ph. D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Y. Samim Ünlüsoy 

 
September 1998, 185 pages 

 
 To predict the cornering characteristics of a pneumatic tire during the design 
stage, a detailed finite element model of the tire is constructed. The nonlinear stress-
strain relationship of rubber, the reinforcement of the tire, large displacements and 
strains induced during normal service conditions, frictional contact with ground are 
modeled. To check the validity of the computer model, an external drum type tire 
testing setup is designed and constructed. 
 
 A static tire model is constructed first and its vertical force-deflection 
characteristics and contact patch shape are compared with the experimental tire to 
check the accuracy of the finite element model. Quasi-static cornering tire model is 
constructed to simulate the low-speed cornering behavior. Centrifugal load is added 
to the model to simulate the medium speed cornering behavior. 
 
 Comparison of computer model results and tire test results show that finite 
element modeling can be used to predict the cornering properties of a tire during 
early design stages, reducing the time and effort for prototyping and testing. 
 

Keywords: Tire Cornering, Cornering Force, Pneumatic Tires, Tire Testing, 
Nonlinear Finite Element Analysis 
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ÖZ 

 

OTOMOBİL LASTİKLERIN DİNAMİK  

DAVRANIŞLARININ BİLGİSAYARDA MODELLENMESİ 

 

Tönük, Ergin 

Doktora, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Y. Samim Ünlüsoy 

 

Eylül 1998, 185 sayfa 

 

 Otomobil lastiklerinin viraj karakteristiklerini tasarım aşamasında belirlemek 
için ayrıntılı bir sonlu elemanlar modeli hazırlanmıştır. Kauçuk malzemenin doğrusal 
olmayan malzeme davranışı, lastiğin içinde bulunan karkas malzemesi, normal 
çalışma sırasında görülen büyük yer değiştirme ve gerinmelerle yerle lastik 
arasındaki sürtünmeli temas modellenmiştir. Modelden alınan sonuçların sınanması 
için tamburlu bir lastik deney düzeneği tasarlanmış ve kurulmuştur. 
 
 İlk olarak statik bir lastik modeli hazırlanmış, dikey yük-sehim ve temas alanı 
deneysel lastikle karşılaştırılmıştır. Sanki-statik yuvarlanan lastik modeliyle düşük 
hızlarda lastiğin viraj davranışı modellenmiştir. Lastik üzerine merkezkaç yük 
uygulanmasıyla hızın artmasının etkisi de modele katılmıştır. 
 
 Bilgisayar modelinden alınan sonuçların deneysel sonuçlarla 
karşılaştırılması, sonlu elemanlar yönteminin lastiklerin viraj karakteristiklerinin 
tasarım aşamasında kestirilebilmesi için kullanılabileceğini, böylelikle prototip 
üretimi ve deneyler için harcanan zaman ve paranın azaltılabileceğini göstermiştir. 
 

Anahtar Kelimeler: Lastik Viraj Karakteristikleri, Viraj Kuvveti, Otomobil Lastiği, 
Lastik Deneyleri, Nonlineer Sonlu Elemanlar Yöntemi 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 

 In this Chapter, functions of tires in nonguided ground vehicles, brief 

development history of pneumatic tires, modern tire types and tire nomenclature, 

handling behavior of pneumatic tires, and the need for a tire model are briefly 

explained. 

 

1.2 Functions of Tire in a Nonguided Ground Motor Vehicle 

 

 Tire, being the common component of nearly all nonguided ground motor 

vehicles, serves mainly for four distinct functions. A tire being the only 

connection between the vehicle and the ground, supports the weight of the 

vehicle, develops tractive forces to propel and braking forces to stop the vehicle, 

and develops lateral forces to steer the vehicle. A tire takes part in isolating the 

vehicle body against the transmission of vibrations due to the irregular road 

surface. The functions of a modern tire are summarized in Figure 1.1. 

 

1.3 Brief Development History of Pneumatic Tires 

 

 The history of pneumatic tires is very recent compared to that of wheels 

which were invented more than 5000 years ago in Asia by the Sumerians. The 

history of wheels may be found in İpek (1969). The first rubber tires were solid. 



 2

The first pneumatic tire was patented in 1845 by a Scottish engineer, Robert 

Thomson. He intended to reduce the tractive effort to pull the horse carriages and 

to reduce the noise when they are in motion. This tire had a tube of rubberized 

canvas covered by a leather case which was bolted to the wooden rim. The same 

need led John Boyd Dunlop, a Scottish veterinary surgeon, to re-invent the 

pneumatic tire in 1888 for his son's tricycle.  

 

Tire Serves for

Traction
Braking

Carrying
 Weight

  Steering
the Vehicle

  Isolation of Vibrations
(with suspension system)  

Figure 1.1 Basic Functions of Modern Tire 

 

 The obvious advantages of pneumatic tire enjoyed the popularity in cycle 

industry but the pneumatic tire had to wait the invention of detachable tires 

patented by C. K. Welsh, an Englishman and W. Bratt, an American in 1890. In 

1895 a Frenchman, Edouard Michelin, produced the first practical pneumatic tire 

for use on motor vehicles (Michelin, 1997). 

 

1.4 Modern Tire Types, Materials, and Nomenclature 

 

 Modern tires, although of distinct types, have many common properties. 

The three common primary components are the following. The carcass, 

composed of several layers of plies which are coated by a rubber compound to 

maintain the internal air pressure. Bead wires (bundle), to which all the body 
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plies are tied to and which fits the tire on the rim. The tread, which grips the 

road and is most wearing surface of the tire. The common nomenclature used for 

pneumatic tires is shown in Figure 1.2. In a tube type tire, the inflation pressure 

is contained within a tube placed inside the tire. In a tubeless tire, the inflation 

pressure is maintained by the tire itself having a sealing layer of rubber material 

and the rim. The advantages of tubeless tires are; they are lighter in weight 

compared to tube type tires, they have less heat generation and lower operating 

temperatures hence have longer lives and improved safety. In case of nail or 

similar objects penetrating the tire, in most cases the inflation pressure is not lost 

immediately, if the object separates from the tire during operation, inflation 

pressure decreases slowly. The tire installation is simple (Limpert, 1982). 

 

Nominal
Rim Diameter

Nominal Section Width
Tread Drainage Groove

Side
Wall

Tube

Valve Wheel Rim

Bead
Flange

Bead
Seat

Tube Type Tire

Rim Width

Nominal Section Width

Nominal 
Rim Diameter

Tubeless Tire
Valve

Bead Seat

Rim

Side
Wall

Tread Drainage Groove

Bead
Flange

 

Figure 1.2 The Common Nomenclature used for Pneumatic Tires 
 

 Pneumatic tires may be classified as road vehicle tires and off-road 

vehicle tires. The off-road tires are designed to move a vehicle on deformable 

surfaces and the mechanics of such tires on soft soil (mostly termed as 

unprepared terrain) is known as terra mechanics (Wong, 1978). Off-road 

operation is out of the scope of this work. 

 

 The distinguishing factor among different types of road vehicle tires is the 

type of carcass construction. The two basic types of carcass construction are the 
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cross (bias or diagonal in the USA) ply and the radial ply. These basic tire types 

are presented in Figure 1.3. 

 

 
 

Figure 1.3 Two Basic Types of Tire Carcass Constructions,  
Cross Ply and Bias Belted (left) and Radial (right) Tires 

 

 In the very first pneumatic tires the carcass was made of rubberized cotton 

canvas. These tires had a life of 3000 to 4000 km. To eliminate this problem, 

unwowen fabric consisting of cords (treads) kept apart from each other by rubber 

was used. Soon after, it was discovered that the tire characteristics related to ride 

comfort and directional stability were contradicting and were dependent on the 

direction of cords. If the cords were in circumferential direction, the directional 

stability was good but ride was harsh. With the cords being perpendicular to 

circumferential direction, ride was soft but directional stability was almost lost. 

These facts resulted in the design of cross ply tires in 1920's. To obtain a 

compromise, the layers are placed at an angle of 45 degrees with the 

circumferential line of the tire with the adjacent layers in opposite bias. 

Requirements of softer ride and better directional control and stability led the 

development of radial ply tire. In this construction, the cords run from bead to 

bead across the circumferential line. Directional stability is assured by a number 

of belts called breakers beneath the tread. The crown works more independently 

of the sidewalls when compared to cross ply tires. The first radial tire is Michelin 

X, patented on June 4, 1946 and produced in 1948 (Michelin, 1997). Radial tires 
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besides the stated advantages, have longer lives and introduce lower rolling 

resistance to give improved fuel conservation. In the USA, the adoption of radial 

tires required a considerable expense to switch the production, so as a transition 

product, the bias belted tires were produced. Cross ply tires have greater interply 

friction than its radial counterpart which leads to significant structural stresses 

during tire flexing. This causes more heat build-up while working. Sometimes 

reinforcing plies are added to reduce the heat generation. Radial tires are about 20 

% lighter in weight when compared to cross ply ones but they require higher 

inflation pressures. In radial tires, scrubbing (lateral sliding of tire on pavement) 

is less than cross ply ones (Davis, 1997). 

 

 Natural rubber, without any treatment, is not an adequate material for tire 

production, In 1839, Charles Goodyear accidentally mixed the heated rubber with 

sulfur, which he gave  the name vulcanization after Vulcan, the Roman god of 

fire. Goodyear then set about refining the technique by applying different levels 

of heat for various lengths of time, and eventually found that steam applied under 

pressure for between four and six hours at about 132 degrees Celsius gave the 

best results. His discovery was patented in 1844 (Goodyear, 1996a). Tire tread 

material must provide a high coefficient of friction and must grip all kinds of 

road surfaces at any temperature possible, must be resistant to tearing and cutting, 

must bond with carcass material. To satisfy these requirements a compound of 

various synthetic rubbers together with additives is used. Carcass is made of 

rayon, polyester, nylon, glass fiber. The breaker cord material is rayon or fine 

steel wire. Steel belted radial tires offer better directional control and lower 

rolling resistance compared to textile belted radials but are about ten percent 

expensive. 

 

 Tread pattern is introduced to improve gripping particularly on surfaces 

covered with water, snow, mud or ice. A tire without tread would have a longer 

life but a small amount of water, snow, or mud would make a lubricating film 
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thus causing no grip at all. The nomenclature of the tread is shown in Figure 1.4. 

Void ratio of the tire shows the ratio of grooves and sipes to the blocks. A high 

void ratio tire has more grooves to drain water and a low void ratio tire has more 

rubber in contact with the road. Grooves are used to drain foreign particles and 

fluids like dust and mud from contact patch. Sipes are small slit-like grooves 

which help drainage and allow the blocks to move more, to grip the road by 

additional biting edges. Blocks provide traction, braking and cornering forces. 

Dimples, the small indentations improve the cooling of the tread. Shoulder 

provides continuous contact with the road in maneuvers. Ribs create a 

circumferential contact band during rolling (Goodyear, 1996b). Some tread 

patterns for different road conditions are presented in Figure 1.5. 

 

 
Figure 1.4 Tread Nomenclature 
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a.  

b.  

c.  

d.  

e.  
Figure 1.5 Some Different Tread Patterns 

a. Circumferential grooves for silent operation and better handling,  
b. Tread for high traction and braking performance especially in off-road operation,  
c. Circumferential grooves with teeth for handling and high traction performance,  

d. Block tread for better grip especially on mud and snow,  
e. Snow and mud tire  
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 There are many tire designations, most of which are becoming obsolete. 

The two accepted designations are for automobiles and for commercial vehicles 

are shown on Figure 1.6 and on Figure 1.7 respectively. The load and speed 

ratings are tabulated in manufacturer's catalogs and are standardized. 

 

Nominal
Section
Width
[mm]

100* Aspect
Ratio

R: Radial
D: Diagonal
B:Bias Belted

Nominal
Rim

Diameter
[inches]

Load Rating
(see catalogs)

Speed
Rating

(see catalogs)

Figure 1.6 Automobile Tire Designation 

 

Nominal
Section
Width

[inches]

R: Radial
D: Diagonal
B: Bias

Nominal
Rim

Diameter
[inches]

Load
Rating

for Single
Wheel

(see catalogs)

Load
Rating

for Tandem
Wheel

(see catalogs)

Speed
Rating

(see catalogs)

Figure 1.7 Commercial Vehicle Tire Designation 

 

 In the past, a tire’s load carrying capacity was indicated by the number of 

plies it had. With the discovery of stronger materials, today, the ply rating is still 

an indication of load carrying capacity but it may not reflect the real number of 

plies in the tire.  

 

1.5 Handling Behavior of Tires 

 

 In Section 1.2 it was stated that a tire had four functions, to support the 

vertical load of the vehicle, to develop tractive forces to propel and stop the 
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vehicle, to steer the vehicle, and to damp out the road irregularities. These former 

three duties are closely related to tire-road interaction problem which involves 

elastic deformation of the tire structure under a distributed load, frictional 

coupling between the tread and the road in the contact region. The deformation 

and contact problems are mutually interactive and frictional forces generated 

depend on the contact conditions. Tire structure being composite, anisotropic, 

having large deformations and rubber not being linear elastic, the problem is 

rather complex . 

 

 The three orthogonal forces; the vertical force, the tractive force and the 

cornering (lateral) force, are closely related. Variations in the vertical force is the 

prime concern of ride quality. Variations in the tractive force is closely related to 

vehicle performance (maximum acceleration and braking without skidding). 

Lateral (cornering) force, on the other hand, is related to directional control and 

stability of a vehicle, termed as handling. 

 

 Estimation of handling properties of tires is important since tires are the 

only media through which forces are applied to the vehicle to balance the forces 

of inertia and wind, dictating the handling behavior of a vehicle (Dugoff et al., 

1970). Tire properties are also required in vehicle dynamics studies and 

simulations (Allen et al., 1990). The complexity of tire structure and behavior 

prevents the development of a complete and reasonable theory which may govern 

tire characteristics and performance. This complexity arises from symmetrical 

and anti-symmetrical aspects of the tire as well as its quasi-steady state behavior 

and vibratory state behavior (Maalej, et al., 1989). 

 

 The lateral force generated by a tire depends on the slip angle at which the 

tire is operating, among many other factors like inflation pressure, tire and road 

properties and the vertical tire load. Slip angle is the angle between the wheel 

heading direction and resultant direction of motion of the tire. In Figure 1.8, SAE 
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(Society of Automotive Engineers) tire coordinate axes and related terminology 

is shown. Nonzero slip angle occurs when a moving vehicle is steered away from 

the straight-ahead position. Due to inertia forces, the vehicle will tend to go 

straight on. In such a case, the tread in the contact patch will deflect laterally and 

this deflection will gradually increase from front of the contact patch to a point 

where elastic forces are equal to frictional forces, then the tread will slide back to 

its original position since frictional forces are not sufficient to deflect it any more. 

Figure 1.9 shows an exaggerated view of the contact patch to illustrate the so-

called lateral wheel slip phenomena while Figure 1.10 shows the cornering 

(lateral) force characteristics of a typical passenger car tire at various vertical 

loads and slip angles while other operating conditions are kept fixed, in the form 

of a carpet plot (Krivetsky, 1958). 

 

Figure 1.8 SAE Tire Coordinate Axes 
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 Because of the increasing severity in the driving conditions, it has been 

necessary to improve, continually, the quality of pneumatic tires. During the 

growth of tire technology some understanding of the physics of tire behavior has 

also been developed. The origin of tire forces have been recognized but no 

general theory is available to explain, in a unified fashion, the response of tires to 

various combinations of circumstances. 

 

 
Figure 1.9 Lateral Wheel Slip Phenomena 
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Figure 1.10 Cornering Force Characteristics of a Typical Passenger Car Tire 
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 The designers, as well as the vehicle dynamics people, in order to see the 

dynamic behavior of pneumatic tires under different circumstances took two 

different paths. One path is examining the behavior of the tire under various 

operating conditions and recording the data, which is commonly referred as the 

experimental approach. To obtain accurate results, various test apparatus 

configurations have been devised which is discussed in detail in Chapter 2. The 

other path is modeling the tire mathematically. These models range from 

empirical formulae to evaluate various properties of tires under different 

operating conditions, to physical models which require extensive calculations or 

numerical solution methods like the finite element method. Mathematical models 

whether simple or complex requires experimental verifications for the range of 

validity. Mathematical models in literature are analyzed in detail in Chapter 2. 

 

1.6 Need for a Tire Model 

 

 Pneumatic tire, being the only interface between a vehicle and ground, is 

one of the important components of a nonguided ground vehicle. A tire is 

designed, prototyped, tested, and finally presented for sale in the market. This 

whole procedure, especially producing prototype and testing, takes a long time, 

effort, and money. A model to predict the dynamic behavior of the pneumatic tire 

is invaluable as the time and the money spent on prototyping can be greatly 

reduced. Moreover, such tire models provide detailed stress distributions in 

critical sections of the tire where reliable measurements cannot be performed. 

The recent state of art in this subject is such that an experimental process on the 

prototypes to get the dynamic behavior of the tire is certainly necessary. 

However, test setups for this purpose are very complicated and costly. A realistic 

analysis on computer would be a great asset in the design and production of a 

new tire. Such an analysis would guide the tire designers or some expert system 

programs to observe the trends, thus develop better tires. 
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 A detailed tire model considering many physical aspects of tire-road 

interaction is capable of simulating the cornering behavior of real tires in many 

different operating conditions precisely. Such a model is invaluable in both 

vehicle dynamic studies and in design and development of new pneumatic tires. 
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CHAPTER 2 

LITERATURE SURVEY 

 

2.1 Introduction 

 

 The tire models that have been used till today and found in literature may 

be divided into three broad classes as analytical, empirical, and physical tire 

models. Analytical tire models, in general, contain an oversimplified model of the 

physical phenomena. These models are mostly in the form of analytical equations 

of low order having closed form solutions, contain few parameters to be adjusted 

which have rather evident physical meanings. Analytical models yield results 

fastly, they are easy to use, and require no measurements once they are put into 

use for one type of tire; but due to their simplicity they cannot provide insight to 

the details of the essential effects of tire behavior. Empirical tire models are 

based on fitting a curve to the measured tire data. Some researchers attached 

physical meanings to the parameters of the curves, which are sometimes referred 

as semi-empirical tire models in literature. In some other cases, the meaning of 

the parameters are not so obvious. These models require a large amount of data to 

determine the parameters, analytical corrections and/or extrapolations are 

sometimes necessary. Although empirical models represent the tire response 

precisely and yields results in short times, to determine the parameters of the 

model even for a single type of tire, a large amount of experimental data is 

required. Therefore they are used to interpolate the behavior of a tire in between 

the data points obtained by experiments. Empirical models do not supply an 

insight to the details of tire dynamics either. In physical models, the physical 

structure of the tire is considered with appropriate governing material laws, and 
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boundary conditions so highly nonlinear system of equations are obtained. 

Depending on the purpose of the model, some simplifying assumptions may be 

used to shorten the solution procedure, which is nearly always numeric 

(especially advanced discretization techniques like finite element analysis are 

utilized). Physical models, although may include virtually any detail required, 

they are limited by computation time and computer resources. The more the 

included details are, the longer is the computation time. The analytical and 

empirical tire models find application in real time applications like driving 

simulators or in vehicle dynamics studies where tire is a component of a larger 

system, since they do not require long computation time and large computer 

resources. Physical and to a limited extend empirical models are used for 

scientific studies on tire dynamics and optimizing the dynamic behavior of tires 

(Nakajima, 1998). 

 

 In any modeling process, the response quantities obtained from the model 

have to be verified by known, reliable results before accepting the model output 

as representative of the physical system. In case of tire modeling, experimental 

verification is the only way to check the response since there is no universally 

accepted tire model that generates the universally accepted tire response. 

 

In this Chapter, analytical, empirical, and physical models for predicting 

the cornering behavior of tires, found in literature, are examined. The results 

obtained by analytical and empirical tire models are benchmarked by 

experimental results. Tire cornering test machine types, their specific properties 

related to their construction geometries, and test machines found in literature are 

presented in the last section. 
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2.2 Analytical and Empirical Tire Models for Cornering Analysis and Their 

Verification by Experimental Data 

 

 Analytical tire models found in literature, together with the comments 

about these tire models are presented. The nomenclature in the equations in this 

section are identical with the original publications and therefore they may not be 

consistent with the notation used throughout this work. 

 

2.2.1 Experimental Data Used 

 

 Although there exists many experimental tire cornering force data in 

literature, extreme care should be taken to select the data among them for 

benchmarking the tire models. Pottinger et al. (1976) examined the effect of test 

speed and testing surface curvature on cornering properties of tires and concluded 

that drum type tire testing machines, due to road surface curvature, yielded quite 

different results than road tests. They also concluded that too low road speeds 

affect test results as well but not as dominant as roadway curvature. Besides that, 

in order to supply some physical properties of the tire to the tire models, the 

geometric and material details of the test tire should be known. The test data 

fulfilling most of these requirements is the one taken from the Calspan Flat 

Surface Tire Testing Machine (Bird and Martin, 1973). Even if the tire is a cross 

ply tire (Goodyear, G78-15 with a design load of 1380 lbs at 24 psi inflation 

pressure) experimentally obtained cornering stiffnesses at various loads and 

inflation pressures, and cornering force characteristics are presented in great 

detail. The test speed is 10 mph (16 km/h) and tire is freely rolling (i.e. no 

tractive or braking torque). 

 

 Properties of the tire is presented in Table 2.1, cornering stiffness at 

various loads at 28 psi is presented in Table 2.2 and cornering force 
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characteristics at 28 psi inflation pressure (which is the most detailed cornering 

force data in Bird and Martin, 1973) is presented in Figure 2.1. 

 

Table 2.1 Properties of the Experimental Tire 

Tire G78-15 
Experiment Speed 10 mph (16 km/h) 
Inflation Pressure 28 psi (193 kPa) 
Section Width 7 inch (203 mm) 
Inflated Diameter 27 1/8 inch (689 mm) 

 

Table 2.2 Cornering Stiffness at 28 psi Inflation Pressure 

Tire Load Cornering Stiffness 
lbs kN lbs/deg kN/rad 
400 1.78 100 25.49 
800 3.56 190 48.42 
1200 5.34 215 54.80 
1600 7.12 205 52.25 
2000 8.90 185 47.15 

 

 
Figure 2.1 Experimental Cornering Force Characteristics of G78-15 Tire 
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 To obtain the cornering force characteristics using the tire models 

presented here, a computer program using MicroSoft VisualBASIC 3.0 

Professional is written. The carpet plots in this Chapter are obtained from the 

code mentioned. 

 

2.2.2 Linear Spring Analogy 

 

 For small slip angles (up to 2° for light and up to 4° for moderate and 

heavy tire loads), cornering force may be approximated by a linear function of 

slip angle. The constant of proportionality being the cornering stiffness as 

F Cy s= α          (2.1) 

where Cs, termed as the cornering stiffness of the tire, is an indicator of cornering 

force generating capability of a tire. In general, cross ply tires have lower 

cornering stiffnesses than that of a radial tire of the similar type, therefore, 

operating at the same slip angle, a cross ply tire may generate lower cornering 

force than a radial tire, or on the same vehicle, performing the same maneuver a 

cross ply tire has larger slip angle to generate the same cornering force than a 

radial tire. 

 

 The cornering stiffness is formally defined as the derivative of the 

cornering force with respect to slip angle, evaluated at zero slip angle as 

C
F

s
y=

=

∂

∂α
α 0

         (2.2) 

which appears nearly in all tire models presented. The deficiency of such linear 

model is that, when slip angle exceeds the indicated values, the cornering force 

generated by tire is less than predicted by the model. This phenomena is mostly 

termed as “saturation of cornering force at high slip angles”. At relatively higher 

slip angles, sliding dominates and cornering force becomes the product of 

coefficient of friction and vertical tire load which is the horizontal asymptote of 

the cornering force. 
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2.2.3 Model by Gim and Nikravesh 

 

 The model by Gim and Nikravesh (1990, 1991a, 1991b) starts with 

uncoupled tire behavior (i.e. cornering or longitudinal slip alone), extends to 

coupled behavior (i.e. longitudinal slip and cornering together) and has 

verification of the model proposed. The contact patch is assumed to be 

rectangular with contact pressure being constant along the tire width and having a 

parabolic distribution along the circumferential direction. The tread is assumed to 

deflect (i.e. adhere to the road) in the line of tire travel until the shear stress 

between a material point on the tire and ground is equal to elastic stress on the 

tread. After that point sliding starts. The assumed behavior of contact patch mid-

line, which may be taken as the representative of the whole contact patch width, 

since constant pressure distribution along width is assumed, is shown on Figure 

2.2 where P is the normal contact pressure at the contact patch. This model can 

use different friction models. The authors recommend either quadratic or linearly 

decreasing coefficient of friction with relative sliding velocity, adding that the 

linear model is fair enough for most of the regular terrains. 

 

 
Figure 2.2 Lateral Deformation of Contact Patch 

and Lateral Stress due to Pure Slip Angle 
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 For adhesion region, using linear elastic material approach, the shear 

stress at any point ξ away from the start of the contact patch is 

σ ξ ξα α
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and for sliding region, the shear stress at any point ξ away from the start of the 

contact patch is 
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 Cornering force is evaluated by integrating the above shear stresses in 

between the appropriate limits as 
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S C S
Fn

y z

= α α

μ3
         (2.8) 

For sliding velocity dependent coefficient of friction 

( )μ μ α α= − −0
21 A S B Ss s        (2.9) 

or for regular terrains 

( )μ μ α= −0 1 A Ss         (2.10) 
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are used. The coefficients As and Bs in quadratic friction reduction model or As  
in 

linear friction reduction factor are obtained by curve fitting to experimental data. 

 

 The cornering force characteristics of G78-15 tire estimated by Gim and 

Nikravesh model is presented in Figure 2.3. When compared to experimental 

data, Gim and Nikravesh model yields slightly larger cornering forces for all 

vertical loads and slip angles. 

 

 
Figure 2.3 Cornering Force Characteristics of G78-15 

Tire by Gim and Nikravesh Model 
 

 In this model the most important tire parameters are the load dependent 

cornering stiffness of the tire and coefficient of friction between the tire and the 

road. Cornering stiffness values presented in Table 2.2 are used and coefficient of 

friction is taken to be 0.85 (sliding coefficient of friction between tire and road) 

which is assumed to be independent from rolling velocity. Tire speed is taken to 

be 16 km/h without traction or braking. 
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 Gim and Nikravesh model requires load dependent cornering stiffness 

values and coefficient of friction between the tire and the road precisely. This 

model is also capable of simulating the effect of traction and braking by 

supplying the longitudinal slip.  

 

2.2.4 Model by Stribersky and Fancher 

 

 Stribersky and Fancher (1989), to model the nonlinear cornering behavior 

of heavy duty truck tires, used a simple, yet nonlinear tire model. Their model 

resembles the model by Gim and Nikravesh (1990, 1991a, 1991b) but the 

longitudinal pressure distribution at the contact patch is assumed to be elliptic. 

The coefficient of friction is assumed to be a function of radial load, and tire and 

road property, not a function of relative sliding velocity. Following the same 

procedure as in the model by Gim and Nikravesh, the lateral (cornering) force is 

F F K
K

K
Ky

z=
+

+
+

⎛
⎝
⎜

⎞
⎠
⎟

μ
π

α
α

α
α

2
1

2
12 2 2 2

tan( )
tan ( )

arcsin tan( )
tan ( )

    (2.11) 

where 

K C
Fz

=
π
μ

α

4
         (2.12) 

and if lateral stiffness parameter k is known, 

C w k
α =

l 2

2
         (2.13) 

may be used to determine the cornering stiffness. Here w is width of the contact 

patch and l  is the length of the contact patch. 

 

 The model by Stribersky and Fancher requires only load dependent 

cornering stiffness and coefficient of friction between the tire and the road to 

model the tire. The cornering characteristics of G78-15 tire predicted by this 

model is presented in Figure 2.4. 
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Figure 2.4 Cornering Force Characteristics of G78-15 

Tire by Stribersky and Fancher Model 
 

 The load dependent cornering stiffness values of Table 2.2 and coefficient 

of adhesion, 1.3 is used in this model. For low slip angles the predicted cornering 

forces are higher than experimental for all loads whereas for high slip angles 

predicted cornering force is below the experimental value and for high loads it is 

above. The discrepancy implies that either the elliptic pressure distribution 

between this specific tire and road is imprecise or the tire data supplied to the 

model is inadequate to model the situation. 

 

2.2.5 Model by Fancher and Bareket 

 

 Fancher and Bareket (1993) model uses the same physical facts as Gim 

and Nikravesh (1990, 1991a, 1991b), and Stribersky and Fancher (1989) models. 

Constant pressure distribution along tire width and constant or trapezoidal 

pressure variation in circumferential direction of the contact patch assumption is 

the main difference. This assumption is mostly adequate for truck tires. Figure 
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2.5 shows the assumed pressure distribution with the nomenclature used by the 

authors where pmax is evaluated such that the vertical force is balanced with the 

assumed pressure distribution. For heavy vehicle tires, pmax is mostly very close 

to inflation pressure and for automobile tires, pmax may be higher than inflation 

pressure. 

a L-a L

Pmax

x

P

 
Figure 2.5 Pressure Distribution along the Contact Patch 

 

 Besides the general common points, coefficient of friction is modeled by a 

quadratic decreasing function with increasing total slip ST as 

( )μ μ= − −0
21 BS CST T        (2.14) 

where the coefficients B and C are found by curve fitting to experimental data. 

The total slip ST on the other hand, is defined as 

S ST x= +2 2tan ( )α         (2.15) 

In the calculations, the effect of traction and braking is introduced by θ which is 

the angle between the sliding direction and undeformed center line of the contact 

patch, defined as 

θ
α

=
⎡

⎣
⎢

⎤

⎦
⎥

−tan tan( )1

Sx

        (2.16) 

defining λ as  

λ αα= +
⎛
⎝
⎜

⎞
⎠
⎟S C

Cx
s

2
2

tan( )        (2.17) 

the generated cornering forces of the three zones will be as follows: 

For 0 < xs < a sliding occurs at all points with lateral force 

( )F Fy z1 = μ θsin         (2.18) 
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For a < xs < L-a sliding occurs at  

( )x
L

F S

C a
L

a
L

s z x

s

=
−

−⎛
⎝⎜

⎞
⎠⎟

μ

λ

1

2 1
        (2.19) 

with lateral force 
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For L-a < xs < L sliding occurs at 

( )
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x
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with lateral force 
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The cornering force generated by the tire is therefore 

F F F Fy y y y= + +1 2 3         (2.23) 

 

 The model presented by Fancher and Bareket is intended for modeling the 

heavy vehicle tire cornering behavior. As stated in some works (see Jenkins, 

1982 for a detailed discussion on contact patch pressure distribution differences 

in heavy vehicle and automobile tires as well as new and worn out tires), the 

contact patch pressure distribution of heavy vehicle tires are much different than 

that of light vehicles such as automobiles. In heavy vehicles, pressure distribution 

is more uniform when compared to that of automobile tires. In order to simulate 

the non uniform behavior of automobile tires, a/L ratio is taken to be 0.45, which 

yields a rather triangular pressure distribution. For cornering stiffness, the load 

dependent values presented in Table 2.2 are used. For longitudinal stiffness, since 

no data is available a typical value of 30 kN/m, for coefficient of friction 0.85 is 
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used. The cornering characteristics predicted by the Fancher and Bareket model 

is presented in Figure 2.6. 

 

 When compared to experimental data in Figure 2.1, the model may 

predict precise results up to a slip angle of 6 degrees. In slip angles exceeding 6 

degrees, the cornering forces predicted by the model exceed the actual values. It 

should be emphasized once more that this model is for modeling heavy vehicle 

tires and G78-15 being a passenger car tire, one cannot expect precise results 

with this model. 

 

 
Figure 2.6 Cornering Force Characteristics of G78-15 

Tire by Fancher and Bareket Model 
 

2.2.6 Model by Dugoff 

 

 The model by Dugoff (Maalej, Guenther and Ellis, 1989) is one of the 

most common tire models used for vehicle dynamic simulations because of its 

simplicity and precise representation of tire cornering behavior even with traction 

or braking. 
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 The cornering force generated is 

( ) ( )
F

C f
sy

y=
−

tan α λ

1
        (2.24) 

where  

( ) ( )
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λ
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1
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              for 1

       (2.25) 
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( ) ( )( )

λ
μ

α
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−

+

F s

C s C

z

x y

1
2 2

tan
       (2.26) 

Coefficient of friction is reduced with increasing rolling velocity as well as 

increasing longitudinal slip and slip angle as 

( )μ μ α= − +0
2 21 eV s tan ( )        (2.27) 

where, e is an empirical friction reduction factor. 

 

 For the G78-15 tire, the cornering force characteristics predicted by 

Dugoff model is presented in Figure 2.7 

 

 As can be seen by comparing Figure 2.7 by the experimental cornering 

force characteristics (Figure 2.1), only using a constant coefficient of friction as 

0.85 and load dependent cornering stiffness values, Dugoff model predicted the 

cornering behavior quite accurately. Since the experimental tire rolls freely, 

longitudinal slip, s, is zero therefore longitudinal stiffness, the coefficient of 

longitudinal slip is of no importance. If the tire were braked or had traction, these 

effects could have been included in the model. 
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Figure 2.7 Cornering Force Characteristics of G78-15 

Tire by Dugoff Model 
 

2.2.7 Polynomial Tire Model 

 

 Polynomial tire model (Maalej, Guenther and Ellis, 1989) is one of the 

simplest curve fit procedures to the experimentally obtained tire cornering force 

data. The cubic fit is capable of producing the saturation behavior of cornering 

force at high slip angles. The model is in the following form: 

F C C C Cy = + + +0 1 2 3
3α α α α       (2.28) 

The constants C0, C1, C2, C3 are functional parameters of the vertical force 

defined as 

C A A F A Fi i i z i z= + + =0 1 2
2 3       i 0,  1,  2,       (2 29) 

The coefficients may be determined by two curve fit procedures using least 

squares method. In this model, the coefficients have to be obtained for various 

camber angles, traction cases, inflation pressures and even velocities since the 

obtained coefficients consider only the effect of slip angle and vertical force 

variations. 
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 For G78-15 tire, the four vertical load dependent coefficients are found 

using least squares method as presented in Table 2.3. 

 

 Using these coefficients, the cornering force characteristics of G78-15 tire 

is predicted as presented in Figure 2.8 

 

Table 2.3 Polynomial Model Coefficients of G78-15 Tire 

Load [kN] C0 [kN] C1[kN/deg] C2 [kN/deg2] C3 [kN/deg3] 

1.78 0.0293619 0.478081 -0.0555614 0.0023781 
3.56 0.0181909 0.7987405 -0.0731533 0.0025747 
5.34 -0.0167787 0.9253293 -0.0689396 0.0021084 
7.12 -0.0319590 0.8265491 -0.029552 3.3278*10-5 
8.90 -0.0308690 0.7438598 -0.0123983 -0.0006178 

 

 
Figure 2.8 Cornering Force Characteristics of G78-15 

Tire by Polynomial Model 
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 A comparison of Figure 2.15 with the experimental data (Figure 2.1) 

reveals that polynomial tire model yields very precise results. Also for any load 

in between 1.78 and 8.90 kN, the coefficients may be interpolated as follows: 

C A A F A Fi i i z i z= + + =0 1 2
2       i 0,  1,  2,  3      (2.30) 

 

 The main drawback of polynomial tire model is that one requires 

excessive amount of experimental data to fit a curve. 

 

2.2.8 Magic Formula Tire Model by Pacejka 

 

 Pacejka (Maalej, Guenther and Ellis, 1989, Pacejka, 1993) in various 

works, presented various versions of magic tire formula. The lateral force as well 

as longitudinal force and self aligning torque are approximated by sine functions 

which are in effect infinite series of polynomial approximations (Maalej et al., 

1989). The lateral force as a function of slip angle is as follows 

( )[ ]F A B C Sy y y y y v= +sin arctan θ       (2.31) 

where 

( )( ) ( )[ ]θ α αy y h
y

y
y hE S

E
C

C S= − − + −1 arctan     (2.32) 

In the above equations Ay, By, Cy, Ey are the four coefficients depending on tire 

properties whereas Sh and Sv are the horizontal and vertical shift parameters. 

Pacejka attached some meanings to the four coefficients as; Ay representing the 

peak value of the side force, the product AyByCy representing the cornering 

stiffness at zero slip and Ey influencing the curvature of the curve. 

 

 It is obvious that obtaining these coefficients for a particular tire is quite 

difficult since the equations involved are highly nonlinear. Convergence of the 

solution is another problem. Maalej et al. (1989) obtained the coefficients 

presented on Table 2.4 for a Firestone P195/70R14 tire with 26 psi inflation 

pressure by using a commercial nonlinear regression analysis program with 
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considerable CPU time. Figure 2.6 presents the cornering force characteristics of 

the same tire model. 

 
Table 2.4 Coefficients of Pacejka Model for Firestone P195/70R14 Tire  

with 26 psi Inflation Pressure 

Fz [lbs] Ay [lbs] By  Cy  Ey Sh Sv 

462 -1009.72 0.36 0.31 -1.51 0 0 

995 -2946 0.22 0.33 -0.5 0 0 

1455 -3348 0.27 0.25 -1.23 0 0 
 

 
Figure 2.9 Cornering Force Characteristics of a Firestone P195/70R14 

Tire by Pacejka Model  
 

2.2.9 Model by Segel 

 

 The model proposed by Segel (Maalej, Guenther and Ellis, 1989) in 1972 

was used for some vehicle dynamic simulations. The range of validity of the 

model is not verified experimentally. The cornering force is 

( )F g s Fy i y= max          (2.33) 

where 
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and 
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μ
      (2.35) 

Fy max  is the upper bound of the cornering force, the three empirical constants A0, 

A1 and A2 are the coefficients of the quadratic curve, approximating the cornering 

stiffness given by 

C A A F A
A

Fy z z= + −0 1
1

2

2        (2.36) 

In Segel model, the coefficients in the following equation 

C A A F A
A

Fz zα = + −0 1
1

2

2        (2. 37) 

are found by least squares method. Using pound as the unit of force and degrees 

as the unit of angles, the coefficients are as presented in Table 2.5 

 
Table 2.5 Segel Model Coefficients 

A0 -4.0 
A1 0.3195 
A2 2806 

 
 Using the coefficients presented in Table 2.5, the cornering force 

characteristics are obtained as shown in Figure 2.10. 

 

 As can be seen from Figure 2.10, Segel model yields good results. In 

order to use Segel model, the variation of cornering stiffness with respect to tire 

load is sufficient. 
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Figure 2.10 Cornering Force Characteristics of G78-15 

Tire by Segel Model 
 

2.2.10 Model by Allen 

 

 The model presented by Allen et al. (1987) is based on a saturation 

function in the form of ratio of two polynomials as 

( )f
c c

c c c
σ

σ σ
π

σ

σ σ σ
=

+ +

+ + +

1
3

2
2

1
3

3
2

4

4

1
       (2.38) 

The coefficients ci are experimentally determined and only two groups of 

coefficients are proposed by the authors, one for bias ply tire and one for radial 

tires as presented in Table 2.6. 

 
Table 2.6 Saturation Function Coefficients of Allen Model 

Tire Type c1 c2 c3 c4 

Bias Ply 0.535 1.05 1.15 0.80 
Radial 1.0 0.34 0.57 0.32 

 
σ is the composite tire slip and is determined by the expression 
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The cornering force is therefore 
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F F
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K K s
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Lateral stiffness coefficient is defined as 
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where the coefficients Ai for three different tires are experimentally obtained as 

presented in Table 2.4. The longitudinal stiffness coefficient is 

( )K
a

F CS FZc
po

z=
2

2 /         (2.42) 

the ratio of cornering stiffness to lateral load (CS/FZ) is presented in Table 2.4.  

 

Tire contact patch length is defined as 

( )a
F F

T Tpo
z ZT

w p

=
+

0 0768
5

. .
        (2.43) 

where FZT is the tire design load at operating pressure (lbs), Tw is the tread width 

(in) and TP is the tire inflation pressure (psi). 

 

 If required, peak (static) tire road coefficient of friction may be evaluated 

by 

( )μ0 1 3 4
2 0= + +B F B B F SN

SNz z
T

       (2.44) 

The coefficients Bi are presented in Table 2.7 and SNT is the test skid number, 

having the value 85. 
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Table 2.7 Tire Parameters for Allen Model 

Parameter Standard Cross 
Section Radial 

Bias Ply Wide Section Low 
Profile Radial 

Tire Designation 155 SR 13 P155/80 D13 P185/70 R13 
Tire Width [in] 6 6 6 
Tire Pressure [psi] 24 24 24 
Tire Design Load [lbs] 810 900 980 
A0 914.02 817 1068 
A1 12.09 7.48 11.3 
A2 2028.24 2455 2442.73 
A3 1.19 1.857 0.31 
A4 -1019.2 3643 -1877 
B1 0.0003396 -0.000257 -0.000169 
B3 1.19 1.19 1.04 
B4 4.98 x 10-8 2.64 x 10-8 1.69 x 10-8 
CS/FZ 18.7 15.22 17.91 
 

 The saturation function coefficients of Allen model are supplied by the 

authors (Table 2.6). The A coefficients are the same as Segel Model, except this 

model uses radians as angle unit so A0 and A1 are multiplied by 180/π. Using 

Allen model, the cornering force characteristics of G78-15 tire is found as 

presented in Figure 2.11. 

 

 
Figure 2.11 Cornering Force Characteristics of G78-15 

Tire by Allen Model 
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 Allen model, by using load dependent cornering stiffness, can model the 

cornering characteristics of the tire very precisely provided that adequate 

experimental data is supplied. 

 

2.3 Physical Tire Models in Literature 

 

 Physical tire models obtained from the physical nature of the tire 

materials, using the governing laws. Physical models are the most comprehensive 

type of all tire models and are the hardest models to obtain solution due to the 

following facts. 

 The stress-strain relation of rubber deviates substantially from linear 

behavior, and shows a hardening behavior with increasing strain, which is harder 

to solve than softening behavior materials (Tekkaya, 1994) and viscoelastic 

behavior is dominant in time dependent problems. 

 

 Tire is not made of a single material but of many materials of different 

properties. Even composite material solutions are simpler than a tire composite 

solution due to: 

  • the differences in moduli between the reinforcing cords and the 

matrix is in the order of 1000 to 1 000 000 in tires whereas in a laminated fibrous 

composite it is often 10 to 20 

  • the cord used in tire is usually a collection of a large number of 

extremely small filaments which are twisted into a single reinforcing filament 

which has significantly different load deflection curves in tension and 

compression whereas most laminated fibrous composites have straight fibers 

  • distribution of cords in tires is not uniform in general, so 

smearing or averaging of properties has a limited utility. 

 Except inflation pressure, loads are not symmetric. Ground contact 

(contact patch) has dry friction in addition to contact. A rolling tire has 

centrifugal force and impact loading as well. Thermal loads arise from 
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manufacturing and operating conditions like unequal expansion and contraction 

of rubber and cord, nonuniform temperature due to working etc. (Noor and 

Tanner, 1985). 

 

 Although there are many difficulties concerned with physical tire models, 

the necessary tools to tackle with them at least one by one are available. What 

makes the problem difficult is that, the tire has all the above stated complications 

together. Still many researchers, having the necessary tools, made some 

simplifications depending on their purpose, on the model and obtained certain 

solutions. Although some models have oversimplifications, they form a base for a 

starting point to tackle the problem. 

 

Kennedy and coworkers (1981) using triangular elements and rule of 

mixtures, linear elastic material model, including geometric nonlinearities, 

obtained axisymmetric tire model for inflation analysis. They validated their 

model by displacement and strain measurements on various positions on an 

experimental tire. 

 

 Huncler et al. (1983) developed a geometrically nonlinear shell finite 

element for tire vibration analysis. The element is axisymmetric, orthotropic, 

prestressed, doubly curved (curvature is introduced by an internal node not by 

radii of curvatures) and has cubic displacement functions. 

 

 Ridha et al. (1985) modeled the tire to be a homogeneous solid and with 

smooth tread. Authors aimed to model the contact between tire and road therefore 

they tried to omit the aspects of the tire which they believe to be of secondary 

importance. They model the nonlinear behavior by tangential stiffness matrix. 

Young's modulus for rubber was taken to be 26.2 MPa from a tensile test and 

Poisson's ratio was assumed to be 0.48 (i.e. nearly incompressible material 

behavior). The tire is first inflated to 24 psi (165 kPa) in four increments then the 
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rim is displaced by 1 inch (25.4 mm) in ten increments to obtain the desired 

loading. To determine the failure due to strain energy, strain energy densities are 

evaluated as well. 

 

 Rothert et al. (1985) loaded a homogeneous and grooveless tire axially, 

included contact and friction algorithms. They modeled the nonlinear material 

behavior by the following relation 

( )E E E= −0 1 α εmax         (2. 45) 

where εmax is the maximum principal strain. Initial Young's modulus (E0) is taken 

to be 5.78 MPa, αE is 3.364, Poisson's ratio is 0.324, the static coefficient of 

friction 1.0 and dynamic coefficient of friction 0.8 between tire and road.  

 

 Padovan and Paramadilok (1985), recognizing the total Lagrangian 

formulation being cumbersome, proposed a modified Hughes type contact 

strategy using moving total Lagrangian coordinates which has the observer on the 

non-rotating axle. They modeled the tire as a ring on elastic foundation since they 

found a full three dimensional analysis computationally very expensive. 

 

 Richards et al. (1986) examined the effect of boundary conditions on tire 

rim and contact patch on the vibratory modes of the tire. They use 234 nodes, 

1404 degrees of freedom (6 degrees of freedom per node) and 216 shell elements 

with equivalent structural properties to the composite shell behavior. They 

included the mass and inertia, lumped at the wheel center. They imposed various 

boundary conditions to the axle and contact patch, obtained the natural modes of 

the tire, verified by experiments. 

 

 Faria et al. (1992) included the viscoelastic material behavior by an 

internal state variable tensor. The friction between tire and road is modeled by 

regularized Coulomb law. An algorithm is proposed to specify the hub load 

instead of hub deflection, to formulate the problem in a more natural way. A 
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constitutive perfect gas equation is introduced to account for changes in inflation 

pressure (it was seen that pressure change due to deformation is negligibly small 

but in further models, the authors plan to include thermal effects as well, which, 

they suppose would cause considerable changes in inflation pressure). They used 

three types of isoparametric finite elements, 20-node brick, 8-node multilayer 

shell and 16-node multilayer thick shell elements. They introduced a formulation 

for steady solution. 

 

 Du et al. (1998) modeled rolling loss and temperature field due to rolling 

loss of steady rolling tires by nonlinear finite elements. Seifert et. al. (1998) 

modeled the global wear using finite element method, Turner and coworkers 

(1998) and Snymann (1998) modeled steady state rolling behavior of tires by 

finite element technique. 

 

 Noor and Tanner (1985) in their extensive work about tire models, 

classify the physical tire models into six categories. The six models and their 

properties are briefly explained below. 

 

 i) Early Tire Models: The tread is considered to be a prestressed string or 

ring with bending stiffness, and sidewalls as elastic or viscoelastic foundations. 

This type of models require excessive experimental data to determine the 

equivalent properties. Accuracy and range of validity of these models are not 

known in advance. 

 

 ii) Cord Network Models (Netting Analysis): The inflation pressure is 

assumed to be carried by cords. These models neglect bending of tire and 

stiffening effect of rubber matrix surrounding cords. 

 

 iii) Membrane Models: They use linear or nonlinear momentless theory of 

shells. Bending on shell deformations are neglected. Although these models are 
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useful in evaluating the tire inner tube behavior, they cannot handle 

discontinuities in loading, geometry, or material properties. 

 

 iv) Two Dimensional Axisymmetric Models: These models, as the name 

implies, are limited to axisymmetric loading, used to study tire response to cord 

shrink forces and inflation pressure. 

 

 v) Three Dimensional Continuum Models: There exists two approaches: 

 1. Semi-analytic Techniques: They are used to reduce the dimensionality 

of the problem. 

 2. Three Dimensional Isoparametric Elements: They are used to model 

various properties of tires. 

 

vi) Two Dimensional Thin and Thick Shell Elements: Thin shell models 

reduce the dimensionality of the problem therefore are simpler, but since these 

models use Kirchoff-Love shell theories which neglect transverse shear 

deformations, their use is questionable. Thick shell models may be used with 

care. Also including anisotropy due to reinforcement enlarges the model. 

 

 There exist some other models which are included neither in the 

classification of this thesis nor by the six types examined by Noor and Tanner, in 

literature. One of these models is the traction and handling behavior of tires on 

deformable surfaces. Crolla and El-Razaz (1987) presented such tire models 

found in literature and proposed their own model. Due to complexity of the 

deformable surface and due to simplicity requirements for vehicle dynamics 

simulations, the models contain empirical constants and are explicit except that of 

Crolla and El-Razaz's. Karafiath (1986) extended the model of straight traveling 

tire on deformable surface to steered tires. Balkin et al. (1997) in his extensive 

work about tire modeling efforts in various countries with a special focus on 
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Soviet research, mentions more elaborate cord network models solved by finite 

difference method by Soviet researchers. 

 

2.4 Specifications of a Perfect Tire Model 

 

 There exists many tire models in open literature, each is for a specific 

purpose, having its own advantages and disadvantages. Analytic tire models are 

oversimplified models of actual tire. Under standard operating conditions, 

depending on the precision of experimental properties supplied, may yield precise 

results with little effort. Empirical tire models require more experimental data, 

and again depending on precision of experimental data they can yield precise 

results as well. Empirical tire models may even model nonstandard operating 

conditions, if data about such conditions exist. Physical models on the other hand 

have a quite different nature. These models are intended to understand the tire-

road interaction, the detailed dynamic behavior of tires like wear, temperature 

build-up when running, noise generation, local surface tractions at the contact 

patch and the like. In performing such a detailed analysis cornering force 

characteristics is mostly obtained as either one of the outputs or as a byproduct. 

Physical models mostly require the geometric and material data with operating 

conditions only. Since they do not require experimental data, they are also widely 

used in design process of a tire. The problem with the physical tire models is that 

they require rather long time to prepare the model and long computational time 

on computer. 

 

 With the above discussion, a perfect tire model, if it exists, should bear 

the following properties: 

 

 The input data to the model should contain only the physical properties of 

the tire such as its geometry, material constants etc., and the running conditions 

of the tire. It should not contain any experimental data about the tire itself. 
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 The model should precisely describe the dynamic behavior of the tire. It 

should not contain oversimplifications or global approximations. 

 

 The computational effort to solve the problem should be not be excessive. 

 

 Unfortunately such a perfect tire model is not available yet, so depending 

on the needs, one should either use analytic or empirical tire models, containing 

oversimplifications and requiring experimental data about tire or physical tire 

model requiring long computation time on computer. In this thesis, although 

analytic and empirical tire models are examined, the aim is to determine the 

cornering behavior of tires with as few experimental data as possible and to make 

as little oversimplifications as possible unless none is possible. Therefore a 

physical tire model will be constructed and the cornering behavior of the tire will 

be obtained from this model. 

 

2.5 Need for Model Verification 

 

 As in any modeling effort, the behavior of tire model under various 

operating conditions must be verified using an experimental scheme. Besides 

verification, experiments provide tuning a complex model to its physical 

counterpart, if the phenomena is not modeled completely.  

 

 Tire, having a rather complex geometry with thread, reinforcements, 

viscoelastic material behavior, large deformations, inflation pressure, contact 

with ground, cannot be expected to be modeled completely. Even material 

constants of rubber are very different in various references and it is believed to be 

different depending on the properties of a specific rubber, its age, storage 

conditions (time history) and ambient temperature. To determine the uncertainties 
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in such cases and their effect on dynamic properties of tires, one cannot avoid 

experimental verification. 

 

2.6 Tire Testing Devices Found in Literature 

 

 In tire testing some parameters are controlled and the handling properties 

are measured at these known parameters, namely the operating conditions. 

Depending on the specific test procedure, the controlled parameters are the tire 

(radial) load, slip angle (or steering angle), camber (inclination) angle, tire 

inflation pressure, driving/braking torque, speed of the test tire and roadway, 

variation in the roadway characteristics including different road surfaces, 

hydroplaning, snow and ice. 

 

 The most important handling properties are the lateral force, which 

determines the directional stability of the vehicle and the self-aligning torque, 

which is a function of the lateral force and pneumatic trail of the tire. There are 

some derived properties which are used as benchmarks of tire handling 

performance such as cornering stiffness, cornering coefficient, camber stiffness, 

lateral coefficient of friction. In tests with powered tire it may be necessary to 

determine the percent wheel slip as well. For vehicle dynamic simulations, the 

above stated static response quantities may not suffice and it may be necessary to 

determine the dynamic response of cornering force to some predetermined 

dynamic slip angle (Weber and Persch, 1976) or the relaxation length (Loeb et 

al., 1990). 

 

 In a test, mostly the three mutually orthogonal forces and moments on tire 

axle are measured using various types of transducers. In some tests it may be 

important to monitor the instantaneous tire inflation pressure, effective tire 

rolling radius, roadway, and rolling speeds. 
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 Laboratory tire testing devices for force and moment characteristics of 

tires simulate the operating conditions of the tires in the laboratory. The main 

advantage of laboratory testing devices is that, they have more controlled testing 

conditions when compared to the devices performing the tests on road. The main 

disadvantage is that they cannot simulate the actual driving conditions precisely 

due to the facts explained in detail below. 

 

 In nearly all types of tire testing machines there exists a large amount of 

common features. These are the test tire which may be loaded to a desired test 

value, with desired inflation pressure and may be powered or free rolling. Some 

transducers measure the forces and moments generated on the test tire. The main 

distinguishing factor in laboratory tire testing devices is the shape of the 

roadway. In some instances, there exist accessories to emulate different roadway 

conditions such as water sprays for hydroplaning and different coatings on the 

roadway surface to emulate different construction materials. 

 

2.6.1 Flat Bed Tire Testing Machines 

 

 The test surface in a flat bed testing machine is a traveling table. Due to 

limited stroke of the table, the test speed is kept low compared to actual operating 

speed of a tire, and steady state operating conditions may not be reached. This 

type of machine is very useful in determining the elastic properties of tires. 

Figure 2.12 shows the schematic representation of a flat bed tire testing machine. 

 

 General Motors Research Tire Test Machine (Nordeen, 1964) is a flat bed 

tire test machine which supports the tire within an assembly of three frames. The 

outer frame performs slip angle adjustment, the middle frame performs camber 

angle adjustment and the inner one performs tire loading (by vertical movement). 

The machine is constructed such that the center of tire contact remains fixed 

independent of tire deflection, camber or slip angle. Force measurements are 
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performed by strain gages. The table which emulates the roadway is 10 ft (3.05 

m) long and may be propelled at a speed of 1 mph (1.6 km/h) in any of the fore or 

aft direction. The table has a temperature control between 0 and 130°F (-17.8 and 

54.5°C) and it may be wetted, flooded or frozen for different road conditions as 

well as different surface material may be stuck on it. 
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Figure 2.12 Flat Bed Tire Testing Machine 

 

 B. F. Goodrich flat-bed tire testing equipment (Pottinger, 1976) is derived 

from General Motors device and "Flat-Plank" tester designed and constructed by 

Dunlop. It is capable of measuring each of the six force and moment components 

under precisely controlled conditions. This machine is identical to Highway 

Safety Research Institute testing machine except B. F. Goodrich machine is 

structurally stronger. 

 

2.6.2 Flat Surface Tire Testing Machines 

 

 In flat surface testing machines the limited table stroke problem in flat 

bed testing device is eliminated. Flat surface testing machines, like the flat bed 
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testing machines can simulate the roadway conditions precisely when compared 

to curved surface tire testing machines which will be explained in the following 

sections. The contact patch and the pressure distribution in the contact patch are 

more realistic when compared to curved surface tire testing machines. In return, 

these machines have very complex roadway constructions. Figure 2.13 shows the 

schematic representation of a flat surface testing machine. 
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Figure 2.13 Flat Surface Tire Testing Machine 

 

 The two different types of flat surface tire testing machines found in the 

literature are The Tire Research Facility (TIRF) by Calspan (Bird, 1973) and The 

Flat-Trac machines model I (Langer, 1980) and model II (Stocker, 1991) by MTS 

Systems Corporation. 

 

 The TIRF machine has an upper frame in the form of a bridge housing the 

tire positioning system and the roadway watering system. The tire and the 

roadway are powered by hydraulic motors. Roadway is a stainless steel belt 
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covered with desired road construction material and is supported by air bearings 

against tire load. The test tire is positioned to desired slip and inclination 

(camber) angle and normal load is applied by a closed loop servo hydraulic 

system. The forces and moments are measured by strain gages which have small 

deflections (i.e. deflections do not spoil positioning) yet producing sensible 

signals. Temperature compensation of strain gages are performed by standard 

methods. Measured forces and moments are transformed into SAE coordinates. 

The machine has a watering system for wet surface tests and hydroplaning. The 

raw data is stored in magnetic disks, reduced and corrected if needed by a 

computer, presented as carpet plots. At some instances, equations are solved by 

the computer. 

 

 Flat-Trac test machines have very stiff machine frame to deflections as 

well as rotations in all axes. The frame is different from other constructions and is 

A-shaped. The radial position, slip angle and camber angle axes are not coupled 

so adjusting one does not affect the adjustment of other. The belt tracking system 

is constructed such that belt deflections are kept very small not to affect the 

measurements. One of the belt drums is powered in radial direction in order to 

adjust belt tension to minimize belt deflections. The belt is supported against 

radial loading of the tire by a bearing made of plastic material, hydrodynamically 

lubricated and cooled by water. In model I the control system of the machine has 

three parts, the analog control system, the operator's control system and the data 

reduction and acquisition system. The machine measures test data in machine 

coordinate system, then converts it into SAE tire coordinate system. The data is 

averaged for each tire revolution then displayed. The output may be obtained as 

in the form of a carpet plot or tabulated depending on the request. The load 

transducers are serially connected, each measuring one component of the force 

vector. Each sensor operates as a flexural four-bar linkage sensitive only in one 

direction. 

 



 48

 The Flat-Trac Model II test machine is developed because the 

requirements for tire testing exceeded the capabilities of Model I stated above. 

Model II, although resembles Model I, has extended features. The major 

improvement over Model I is that Model II is capable of performing tire tests 

under dynamically changing conditions. The force transducers used in Model I 

are replaced by a one piece very stiff force and moment transducer with no 

measurable hysteressis under extreme loading conditions. Due to the stated 

properties of the transducer, tire uniformity measurement at high speeds is 

possible. 

 

 The major tire tests performed on Flat-Trac Model II are the residual pull 

test which determines the residual aligning torque and lateral force on a free 

rolling tire at various slip angles, tire loads, inflation pressures in both forward 

and reverse directions. In tire traction tests, tire traction properties as the tire is 

ramped to a specified positive or negative slip ratio with inflation pressure, load, 

belt speed, inclination (camber) angle and slip angle held constant during each 

ramp. The slip angle frequency response test is a dynamic free rolling test for 

measuring the force and moment response of a tire to a cycling slip angle at 

various frequencies. The slip angle sweep test is a free rolling test for collecting 

transient data for dynamic simulation of severe vehicle handling behaviors. 

 

 

2.6.3 Drum Type Tire Testing Machines 

 

 a) External Drum Tire Testing Machines  

 

 The complexity of roadway construction in flat surface tire testing 

machine is eliminated by using an external drum but due to convex curvature in 

the roadway, the contact patch of the test tire is smaller than that of a tire 

operating on a straight road and the contact patch pressure distribution is different 
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than that of a tire on a straight road. This requires correction on the obtained data 

for obtaining straight road characteristics. The correction may be a complex 

function of many testing parameters. Some authors (Pottinger, 1976) even claim 

that a point by point correlation is required to obtain the flat surface cornering 

characteristics from a curved test machine results which is practically not 

possible. The common practice is either comparing different tires with a test tire 

or estimating flat surface cornering properties of the test tire by using simple 

corrections. Figure 2.14 shows schematic representation of an external drum tire 

testing machine. Delft University (Zegelaar and Pacejka, 1996) and Mercedes 

Benz A. G. (Liester, 1997) have external drum tire testing machines whose 

specifications are not known in detail. 
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Figure 2.14 External Drum Tire Testing Machine 

 

 
 
 b) Internal Drum Tire Testing Machines 
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Internal drum test machines are similar to the external drum tire testing 

machines, except the roadway surface is concave and the tire runs on internal 

surface of a drum. In literature there exists a comparative measurement with 

internal drum test machine and roadway tests (Bergman et al, 1971). The authors 

claim that they could not obtain similar conditions on test machine and on road so 

they use some kind of data normalization to compare the test results. The authors 

claim that excellent correlation exists between normalized road test results and 

normalized laboratory test results so it is necessary to use normalization 

techniques in data processing. Figure 2.15 shows a schematic representation of an 

internal drum tire testing machine. 
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Figure 2.15 Internal Drum Tire Testing Machine 

 

 

 

2.6.4 On Road (Mobile) Tire Testing Devices 
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 Although mobile testers perform tire testing in a realistic environment, it 

is mostly hard to maintain uniform road conditions. The combined dynamics of 

the vehicle and tire makes interpretation of results harder than that of laboratory 

devices for the sole characteristics of tires whereas for combined test results of a 

tire on a specific vehicle, this type of device is desired. 

 

 There are different types of mobile testers, some of which are cornering 

trailers and cornering vehicles. Other types of test vehicles are mostly used for 

determining traction and braking characteristics of tires (Dugoff and Brown, 

1970). 

 

 Cornering trailers are mostly three wheeled trailers, one wheel is for 

stabilizing the vehicle and the remaining two may be steered oppositely and/or 

camber angles may be adjusted for simulating different operating conditions. By 

using a three directional force transducer, the response quantities may be 

determined as the parameters being the trailer speed, tire load, steering and 

camber angles, tire inflation pressure and the like (Dugoff and Brown, 1970). 

Figure 2.16 shows the sketch of a typical cornering trailer. 

 

Correction wheel

         Test wheel

     5th wheel

Direction of travel

 
Figure 2.16 Cornering Trailer 
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 One of the existing models of cornering trailers is General Motors 

Proving Ground Tire Cornering Test Vehicle (Cortese and Rockafellow, 1971). 

The trailer tires may be swept through a selected angular range of steering while 

various parameters are recorded. The wheels may be braked at any instant 

required, the camber angles are adjusted manually before the test starts and 

remains constant throughout a test run. The control is performed by combined 

electronic, pneumatic, hydraulic system. Electronic system is used for the control 

of hydraulic and pneumatic systems as well as for data recording and processing. 

Pneumatic system has the supply driven by electric motor and, the filtered, dried 

and regulated air is used in the braking system as well as in the jacks to lift the 

trailer for changing tires and/or adjusting the camber of tires. Hydraulic power is 

supplied by a pump driven by the truck engine is used to actuate the slip angle of 

the wheels and the tracking stabilizer wheel. The following data are measured; 

tire vertical, lateral, fore-aft forces, angular position of the tire with respect to 

trailer, camber angle, test wheel angular velocity, trailer angle with respect to 

direction of travel, vehicle speed (determined by an independent fifth wheel). To 

obtain these data, four types of transducers are used. Force transducers are used 

to measure three orthonormal force components generated at the tire. Precision 

DC tachometers are used to measure the angular velocities of test wheels and the 

independent fifth wheel (these two data yield wheel slip of the test tire). 

Cornering angle, camber angle and the angular position of the test wheel with 

respect to the trailer are measured by angle transducers. 

 

 Another test equipment found in literature, which may be classified as a 

cornering trailer (although it is not exactly) is the Mobile Tire Testing Machine 

(MTTM) (Holloway et al, 1991). MTTM is connected to a vehicle to test tires. 

For the first operation trials the vertical load, camber angle, and steering angle 

are adjusted manually and the authors state that they work on servo control 

mechanisms to control the above stated quantities. The tests are performed 

without power application to the tire and it is understood from the paper that two 
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forces (rolling resistance and side force) and one moment (self-aligning torque) 

are measured. Variations of these quantities versus controlled variables are 

plotted. The authors also plan to see the variation of above stated quantities when 

the test wheel runs on the side of the road or when it goes out of the road. 

 

 Cornering vehicles, test tire performance is related to actual tire-vehicle 

system. Tests may be performed using computerized force transducers or just by 

measuring the skid threshold on different roads, speeds, radii of curvature and so 

on (Dugoff and Brown, 1970). 

 

 There exists two types of vehicles for combined traction and cornering 

tests. In non tethered cornering tests, the vehicle is driven on a circle painted on 

the road, the driver increases the speed of the vehicle half or one mile per hour 

(0.8 or 1.6 km/h) per lap until the vehicle control is lost or rear breakaway occurs. 

In tethered cornering tests the test procedure is exactly the same with non 

tethered cornering test except front axle of the test vehicle is attached to a post at 

the center of the circular path by a steel cable. In tethered cornering tests, the 

testing conditions are more uniform in two ways, the test vehicle is positioned on 

the test circle precisely and the effect of driver skill and style is reduced 

(Davisson, 1968). Both tethered and non tethered cornering tests include the 

effect of dynamic behavior of the specific vehicle by which the tests are being 

performed so the results may not be interpreted as tire characteristics alone but 

should be interpreted as performance of a specific tire on a specific vehicle. 

 

 Table 2.8 summarizes some specific laboratory tire testing devices with 

their general technical specifications and Table 2.9 summarizes the on-road 

(mobile) tire testing devices. In both tables only test devices for determining the 

handling properties are included, other tire testing devices are excluded. 
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 Tire-road contact system as well as friction, tire surface distortion, tread 

pattern are complex phenomena. In order to estimate handling properties of tires, 

either oversimplified models are used for rough estimates or tests are performed, 

which yields variation of handling characteristics versus controlled parameters. 

Tests are very useful for controlling the accuracy and validity of newly proposed 

mathematical tire models as well. The main disadvantage of tire tests is that, they 

do not reveal much about the details of tire road interaction phenomena and needs 

a test tire prototype in the design stage of a new tire. Nevertheless, tire testing 

and tire testing devices are still one of the most important components of 

handling behavior studies. 

 

Table 2.8 Laboratory Tire Testing Devices to Determine 
Handling Properties of Tires. 

Machine Type Test 
Speed 

Tire 
Size 

Max. 
Load 

Steer Camber Test 
Conditions 

Test Type 

General 
Motors 

Flat-
Bed 

1 
mph 

17.5 to 
40" 

2000 
lb. 

-30 to 
30° 

-30 to 
30° 

Dry, Wet, 
Ice 

Steady 
State 

B.F. 
Goodric

h 

Flat-
Bed 

2 fps 24 to 
44" 

10,000 
lb. 

-35 to 
35° 
and 
90° 

-20 to 
20° 

Dry Steady 
State 

TIRF Flat 
Surfa

ce 

0 to 
200 
mph 

max. 
46" 

13,000 
lb. 

-30 to 
30° 

-30 to 
30° 

Dry, Wet, 
Flooded 

Steady 
State 

Flat Trac 
I 

Flat 
Surfa

ce 

3.5 
and 7 
km/h 

170 to 
450 
mm

24,000 
N 

-15 to 
15° 

-10 to 
10° 

Dry Steady 
State 

Flat Trac 
II 

Flat 
Surfa

ce 

-250 
to 

250 
km/h 

? 25,000 
N 

-30 to 
30° 

-12 to 
45° 

Dry Dynamic 

 

Table 2.9 On Road Tire Testing Devices to Determine Handling Properties  

Device Type Max. Test 
Speed

Tire Size Max. Tire 
Load

Steer Camber 

GM Proving 
Ground 

Trailer ? ? ? -20 to 20° 
with 8°/s 

-10 to 10° 

MTTM Vehicle 
Mounted 

100 km/h max. 
 810 mm 

12,000 N -10 to 45° -6 to 45° 
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CHAPTER 3 

TIRE TESTING SETUP AND EXPERIMENTS 

 

3.1 Introduction 

 

 In order to test the results of the tire model proposed, a simple yet useful 

tire force and moment characteristics measuring setup is designed and produced 

in the Automotive Engineering Laboratory of Mechanical Engineering 

Department, Middle East Technical University. The test setup resembles the 

external rotating drum types found in the literature as mentioned in Section 2.9. 

In this Chapter, the design and construction stages of the tire testing setup, its 

features and usage as well as experiments done on the setup and on other 

equipment are explained. 

 

3.2 Properties of the Tire Testing Setup 

 

 Although there are many types of laboratory and outdoor tire testing 

machines and setups for obtaining cornering characteristics of tires, as discussed 

in Section 2.9, the outdoor testing machines, having the disadvantage of 

uncontrolled road surface conditions, requiring powerful and expensive traction 

devices, and even some requiring special test tracks, were out of question. There 

exists many types of laboratory tire testing devices for obtaining the cornering 

characteristics of tires. The advantages and disadvantages of those machines are 

discussed in Section 2.9 extensively, with example test machines found in 

literature. From that discussion, it is evident that in order to obtain the cornering 
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characteristics of a tire on the road, it is essential to keep the testing conditions as 

close to real working conditions of a tire as possible. One of the major conditions 

is the curvature of the road. Under road conditions, tire runs on a straight or very 

slightly curved roads (in this context, curvature refers not the road curves to the 

left or to the right but the radius of curvature as at the top of a hill or at the lowest 

point of a valley). The drum type testing machines have considerably small radius 

of road curvatures, in the order of a few meters at most. Therefore the drum type 

test machines, due to having a different pressure distribution at the contact patch 

than road conditions, are not adequate for obtaining the on-road cornering 

characteristics. The flat surface tire testing machines do not have this deficiency. 

On the traveling table type tire testing machines, due to the limited stroke of the 

table, steady working conditions are not reached. Traveling table test machines 

are, therefore, adequate for obtaining static properties of tires like longitudinal 

and lateral stiffnesses. The flat surface tire testing machines, on the other hand, 

do not posses the so far stated deficiencies. They have flat surfaces similar to 

road conditions, they may run at high speeds identical or close to real speeds, one 

may let the tire run long enough to reach the steady state conditions even 

thermally. The only disadvantage of such devices is that, they are extremely 

complex and costly. That is why only a few, large research centers have such flat 

surface tire testing machines and others use drum or traveling table type test 

machines. 

 

 In this thesis, the aim is to test the results of the finite element tire model 

proposed, not to obtain the cornering characteristics of tires on road. Therefore by 

supplying the appropriate boundary and contact conditions, the model may yield 

the cornering force characteristics of a tire rolling on a drum of specified radius. 

This fact simply states that, the tire may be tested under any controlled condition, 

and the model may be tuned for the same condition. The key point is that, the 

cornering characteristics obtained from the computer model must be in agreement 

with that of the tests. With this fact in hand, if road conditions are supplied to the 
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tire model that yields results in agreement with curved surface tests, one may 

expect to get the road behavior of the tire if road conditions are supplied. Now, 

the constraint of testing the tire under road conditions is removed (but still, the 

test conditions should not be too far from road conditions), and the only 

remaining constraint is the simplicity of the test setup. Drum type test machine is 

the simplest one that can perform tire tests under steady state conditions, so a 

drum type test machine is selected. 

 

3.3 Design of the Test Setup 

 

 Drum, being the heart of the test machine, is supplied by the 

governmental railways. It is made of specially machined two scrap locomotive 

wheels, including the axle. The drum has a diameter of 0.979 m and a width of 

0.258 m and is driven by a squirrel cage AC electric motor of power 30 kW 

integral with a gearbox having a reduction ratio of 1:3.8. The electric motor 

speed is controlled by an electronic frequency controller. The remaining parts are 

designed according to the drum dimensions. The drum rests on a concrete block 

which also supports the driving motor and gearbox, and the frame that supports 

and keeps the tire in desired position. The motor can rotate the drum from 0.26 to 

780 rpm corresponding to approximately 0.05 to 148 km/h road speed. The 

vertical load on the tire is maintained by a pneumatic suspension (air spring) and 

the tire is connected to the frame by parallelogram linkages which keep the 

camber angle fixed under different loading conditions. Slip angle and camber 

angle of the tire are adjusted by the T-slots on the fixed frame and the slots 

connected to the force transducer. All the six components of tire forces and 

moments are measured by a six axis compact force transducer having four pylons 

equipped with strain gages and a preamplifier. The raw data obtained is fed to the 

computer through a data acquisition card having 12-bit resolution, for storage. 

Figure 3.1 shows the general view of the setup. In this figure, 1 is the drum, 2 is 

the gearbox, 3 is the 30 kW driving motor, 4 is the cooling motor and fan of the 
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driving motor, 5 is the parallelogram linkage, 6 is the six-axes force transducer, 7 

is the air spring, 8 are the lower and upper T-slots, 9 is the test tire. Figure 3.2 

illustrates the vertical motion of the tire when loaded using two superimposed 

photographs. 

 

 
Figure 3.1 General View of Tire Testing Setup 
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Figure 3.2 The Vertical Tire Motion under Load 

3.4 Running Procedure of the Test Setup 

 

3.4.1 Mechanical Preparations 

 

 The tire to be tested is mounted on the test setup, the bolts are tightened 

carefully. To adjust the slip angle to required value, the laser pointer device is 

used (Figure 3.3). The laser pointer is slided so that plumb line is set to the edge 

of the drum. For precise measurements, the portion of the drum that is free of 

paint must be preferred (Figure 3.3 enclosed by white rectangle). The laser 

pointer must be used with extreme care and all parts of human body and 

especially eyes must be protected from the laser beam and its reflections. The 

nuts of the all four T-slots are slightly loosened (Figure 3.4). The nuts must not 

be over-loosened since doing so may leave the all tire supporting structure 

including the force transducer free, causing personal injury and damage to the 

test setup. The lower nuts are tightened to fix the slip angle of the tire and the 

position of the plumb line is checked once more since the assembly may move 

back and forth on the slots. If necessary, the screws are slightly loosened and 

with the aid of a rubber hammer, fine tuning of the tire slip angle is done. By 

using the hydraulic jack (Figure 3.5) and the bubble (Figure 3.3) on the laser 

pointer slideway, the camber angle adjustment is done, then the upper nuts are 

tightened. The hydraulic jack is lowered slowly by the release valve and the jack 

is taken away. The T-slot nuts and rim bolts must be checked for tightness once 

more, without overloading them. The laser pointer has to be taken away before 

the experiment starts. Extreme care should be taken not to leave any tools on the 

test setup, before the test starts, to avoid personal injury. 
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Figure 3.3 Laser Pointer for Slip Angle Adjustment 
 

 
Figure 3.4 The Lower Two T-Slots for Slip and Camber Angle Adjustments 
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Release Valve

Lever

 
Figure 3.5 Hydraulic Jack for Lifting the Tire 

 

3.4.2. Electronic Preparations 

 

At least 1 hour before the experiment, the six-axis force transducer and 

the data acquisition computer must be powered up so that they reach to a thermal 

steady state before the experiment is done (BERTEC, 1996).  

 

When the mains is switched on, the cooling fan of the drive motor as well 

as that of the electronic speed control unit starts running. The only necessary 

thing is to set the desired experimental speed. To do that, Pr 01 and/or Pr 02 has 

to be set to the desired motor shaft speed in rpm. The road and corresponding 

motor shaft speeds are shown in Table 3.1. Under normal circumstances, no other 

adjustment of the speed control unit should be necessary. For the detailed key 

sequence as well as other adjustments of the speed control unit, refer to Section 

3.4.3, on speed control unit or the User’s Guide of the unit (Control Techniques, 

1993). 

Table 3.1 Motor Shaft and Corresponding Road Speeds 
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Road Speed (km/h) Shaft Speed (rpm) Road Speed (km/h) Shaft Speed (rpm)

5 101 70 1420 

10 203 75 1521 

15 304 80 1623 

20 406 85 1724 

25 507 90 1826 

30 609 95 1927 

35 710 100 2029 

40 811 110 2232 

45 913 120 2434 

50 1014 130 2637 

55 1116 140 2840 

60 1217 147 2982 

65 1319 147.89 3000 

 

 

3.4.3 Programming of Speed Control Unit 

 

 The speed control unit can drive standard AC squirrel cage induction 

motors. The programming can be achieved by the control pod on the unit. The 

control pod is shown in Figure 3.6. 

 

 The upper three keys (MODE, UP and DOWN) are used to adjust the 

parameter values. The lower three keys (RUN, STOP/RESET and FWD/REV) 

control the motor operations. 
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Figure 3.6 The Control Pod of Speed Controller 

 

 Programmed parameters may be seen or changed by pressing MODE key 

once. The parameter LED just above the MODE key illuminates and the 

parameter with its value are alternatingly shown. By pressing UP and DOWN 

keys, the parameter may be changed. With desired parameter selected, pressing 

MODE once more shows the current value of the parameter. By pressing UP or 

DOWN key, the desired value may be selected. Pressing MODE once more 

returns the display to normal mode where the current motor shaft speed is 

displayed. In parameter selection or setting mode, if no input is made, the display 

returns to normal mode in eight seconds. The necessary parameter numbers and 

their identification are summarized in Table 3.2. For a detailed explanation the 

User’s Guide (Control Techniques, 1993) must be referred. 

 

 The five LED’s on the left of the control pod are system status 

announciators. Inverter output active LED indicates that the system is healthy, 

serial comms active LED indicates there is data transmission through serial link, 

dynamic brake active LED shows that the motor is in braking mode, torque limit 

active LED indicates drive is in torque limit and reference encoder selected LED 

indicates that the shaft encoder on motor controls the position and speed of the 

drive motor. 
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Table 3.2 The Necessary Parameters of the Speed Control Unit 

Pr 01 Speed Reference 1 (rpm) 

Pr 02 Speed Reference 2 (rpm) 

Pr 03 Minimum Speed Limit (rpm) 

Pr 04 Maximum Speed Limit (rpm) 

Pr 06 Torque Limit: Motoring (% of full load torque) 

Pr 07 Torque Limit: Regenerating (% of full load torque) 

Pr 09 Forward acceleration rate (25 recommended) 

Pr 11 Forward deceleration rate (35 recommended) 

Pr 41-45 Motor characteristics 

b 02 Drive enable 

b 06 Speed reference selector (1 for S.R. 1 and 0 for S.R. 2) 

b 17 Enable RUN, STOP/RESET, FWD/REW keys (0) 

b 22 Open loop (0) or closed loop (1) speed control 

b 26 Parameter store (save) 
 

3.4.4 Technical Specifications of the Force Transducer 

 

 The force transducer has a unique calibration matrix, which is obtained by 

individual calibration of each force plate by the manufacturer. The calibration 

matrix, when multiplied by the signals in Volts coming from six channels, yields 

forces and moments in Newtons and Newton meters. The conversion from 

electrical potential to forces and moments are performed as: 
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 The coordinate axes of the force transducer is as shown in Figure 3.7, 

where the x-y plane coincides the top plate outer surface of the force transducer 

and the origin is at the center of the top plate. To obtain the tire data in SAE 

coordinate system, the origin of the coordinate system must be translated to the 

center of the tire contact patch whose horizontal distance is half of the tire section 

width added to the distance between tire sidewall and transducer top plate (h) and 

whose vertical distance is the effective rolling radius (ρ) as shown in Figure 3.8. 

The x-axis of SAE system is in y direction of the transducer axis, y-axis of SAE 

system is in z direction of transducer and z axis of SAE system is in x direction of 

the transducer. The measured moments at the transducer coordinate axes is 

transformed into SAE coordinates by the following relation where italics refer to 

the transducer coordinate axes: 
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Figure 3.7 Force Transducer Coordinate Axes 
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Figure 3.8 Transducer (italic) and SAE Coordinate Axes  

 

3.4.5 Tire Testing 

 

 Before the test starts, the bolts of the rim and the position adjustment bolts 

must be checked without overloading them. The test tire must be jacked up for 

zero setting. Please refer to Figure 3.5 for jacking the tire. During zero setting it 

is essential to check that tire is not lowered due to leakage in the jack. The cold 

inflation pressure has to be checked during this period and the tire must have 

rested at least for 2 hours to be identified as cold. The tire may be lowered for the 

testing position after the message showing the zero calibration has ended is seen. 

The jack must be taken away immediately after the tire is lowered and should 

never be left on the test setup while the tire test is being performed. Before the 

driving motor is energized, it must be checked that no tools are left on the test 

setup nor on the tire, to avoid personal injury. The driving motor must be started, 

before the tire is loaded by the pneumatic suspension. While the driving motor is 

running, nobody should be in front of the test machine where there exists no 

protective cage. The tire vertical loading must be started after the drum speed has 

reached to its steady state value, which is understood by the steady motor speed 

seen at the speed control unit display. The loading and unloading must be done 
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incrementally until the desired vertical tire load is reached. The pressure in the air 

spring should not exceed 250 kPa (2.5 bars or 36 psi on gage), not to overload the 

force transducer. Before the experiment is started, the tire must be conditioned 

for at least 15 minutes by running it under medium vertical load and no slip 

angle. At higher slip angles where the tire makes excessive noise, the protective 

headphones are advised to be used. It should be kept in mind that due to high 

inertia of the test drum, it takes some time to stop the test setup. In case of mains 

failure or power loss, since dynamic braking is not available, it takes much longer 

for the test setup to come to a rest. 

 

3.5 Static Tire Tests 

 

3.5.1 Tests on Flat Surface 

 

 In order to verify the results of static tire models on computer, some 

experiments are performed to obtain the load-deflection characteristics and 

contact patch size and shape of an actual tire prior to the construction of the test 

setup. The tire used in experiments is a 155 R 13 78 S one textile body ply and 

two steel tread plies automobile tire. The tire is a used one with an average tread 

depth of 3 mm where the new tires have about 7.5 mm tread depth. 

 

 Before the experiment, the tire is inflated to one of 165, 180 or 200 kPa, 

then pressed towards ground by a known force and the resulting hub deflection is 

measured. In some instances, the contact patch shape is obtained by introducing a 

carbon and a paper between the tire and the ground. The load-deflection 

characteristics of the 155 R 13 tire is presented in Figure 3.9 and a contact patch 

shape is presented in Figures 3.10. 
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Figure 3.9 Experimental Load-Deflection Characteristics of 155 R 13  
 

 
Figure 3.10 Contact Patch of 155R13 on Flat Surface with 180 kPa 

Inflation Pressure and 4160 N Vertical Load 
 

 

3.5.2 Tests on Curved Surface 



 69

 

 With the construction of the test setup, more precise static tests can be 

performed on the drum of the test machine. The old 155R13 and a new one are 

tested on the drum. The old tire has an average tread depth of 3 mm and the new 

one has 7.5 mm. Figure 3.11 shows the experimental load-deflection 

characteristics of both tires on the test drum. The old tire is slightly softer than 

the new tire at lower loads while it stiffens at higher loads due to low tread depth. 

The new 155R13 has nearly linear force-deflection characteristics on the drum. 
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Figure 3.11 Load-Deflection Characteristics of Old  

and New 155R13 Tires on Test Drum 
 

3.6 Initial Cornering Test Results of the Setup 

 

 The first cornering test on the test setup was performed on December 11, 

1997. The test speeds were 7.4 and 24.6 km/h (corresponding to 150 and 500 rpm 

motor shaft speeds). The test tire was a used 175/70R13 having one textile body 

ply and two steel tread plies with 4 mm tread depth. The tire was inflated to 180 

kPa (26 psi). The first test was performed with 7.4 km/h speed and at 2, 3 and 4 

kN tire load. The slip angle was set to -2, 0 2,4,6,8 and 10 degrees with the aid of 

a mechanical positioning device. The driving motor was not able to rotate the 
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drum at 10 degrees with a load of 4 kN. The results of these two test runs are 

presented in Figure 3.12 and 3.13. 
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Figure 3.12 Cornering Force Characteristics of 175/70R13 at 7.4 km/h Speed 

with 2 Degree Slip Angle Incrementation 
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Figure 3.13 Cornering Force Characteristics of 175/70R13 at 24.6 km/h Speed 

with 2 Degree Slip Angle Incrementation 
 

 The two carpet plots are very similar except some experimental errors. 

For such low speeds, the effect of road speed cannot be extracted by the present 

accuracy of the test setup. The plots reveal that more data has to be taken for low 
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slip and the tire may be loaded with more number of increments to higher loads 

to generate smoother curves. 

 

 Figure 3.14 shows the results of the second test run of the tire testing 

machine. During this experiment more data points are obtained so that a carpet 

plot would be drawn. The tire tested is 175/70R13 with one textile body ply and 

two steel tread plies at 180 kPa (26 psi) inflation pressure again. 
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Figure 3.14 The First Detailed Tire Testing of 175/70R13 

 

 Figure 3.14 reveals serious experimental errors due to imprecise tire 

positioning. With a mechanical tire positioning device, the dominant error is at 

the slip and camber angles of the tire. A precise equipment to position the tire 

would be optical, therefore the positioning device schematically shown in Figure 

3.15 is devised using a standard laser pointer used for presentation. The laser 

pointer slides on a ground slideway. With the aid of a plumb line, the pointer is 

positioned just at the edge of the drum. The slip angle of the tire is pointed on a 

screen which is 1320 mm away from the tire axle. With this configuration, the 

laser beam moves 23.0 mm for 1 degree change in the slip angle. Another 

advantage of using laser beam is, the slip angle can be monitored during the 

experiment, provided that the vertical motion of the tire (i.e. the change is vertical 

load) is small. In case of large vertical movements, the position of the laser beam 
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must be corrected using the plumb line since the parallelogram linkage causes 

back and forth motion of the laser. With the laser pointer mounted on the tire 

testing setup, the test result of the same tire, is shown in Figure 3.16. The change 

in curve trends in 2000 and 4000 N around 6 degree slip angle is due to some 

loose bolts in the frame of the test machine, which are tighten to torque after this 

experiment. The detailed usage of the laser beam positioning device is explained 

in Section 3.4.1. 

 

Screen

Laser Beam
Zero Line

Plumb Line

 
Figure 3.15 Schematic Representation of Optical Positioning Instrument 
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Figure 3.16 The First Test with Laser Beam Positioning Device 

 

3.7 Error Analysis of Test Setup 
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 The tire testing results have some experimental uncertainties. The main 

sources of these uncertainties and their detailed treatment are presented, and their 

combined effect is demonstrated on a carpet plot. 

 

3.7.1 Tire Positioning Errors 
 

 The laser pointer can be positioned with ±5 mm accuracy which makes an 

uncertainty of ±0.22 degrees in slip angle. 

 

3.7.2 Force Transducer Accuracy 
 

 The accuracy of force place is typically ±2 N for force measurements and 

±1 N m for moments (Berme, 1998). 

 

3.7.3 Electrical Noise 
 

 The electrical noise, when the drive motor is not powered is less than  ±10 

bits with standard deviation less than 4 bits whereas it increases to ±80 bits with a 

standard deviation of 11 bits when the motor is running. Electrical noise is rather 

random and does not affect the mean value of the measurements significantly.  

 

3.7.4 Analog-to-Digital Conversion Accuracy 

 

 The data acquisition card input range is set to ±2.5 V, card having 12 bit 

(212 =4096 discrete steps) resolution, corresponding to bit has a resolution of 1.22 

mV and a deviation of  ±0.61 mV. The data acquisition card manufacturer (PCL-

718 User’s Manual, 1990) states that the analog-to-digital conversion accuracy is 

±0.01% of reading ± 1 bit which makes ±0.5 mV ±1.22 mV at full scale. The 

overall accuracy of analog-to-digital conversion is better than ±1.8 mV. In terms 

of force and moment, this makes ±3.5 N for rolling and vertical forces, ±6.5 N for 
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cornering force, ±1.5 N m for overturning moment and self-aligning torque and 

±0.7 N m for rolling resistance. 

 

3.7.5 Accuracy of a Data Point on Carpet Plot 
 

 The combined accuracy of a data point on the carpet plot, on a 

conservative side may be estimated depending on the discussion in sections 3.7.1 

to 3.7.4 as: 

Tire Positioning Error: ±0.22 degrees 

Cornering Force Error: ± 10 N 

The vertical load is adjusted by the air pressure in the pneumatic suspension and 

this adjustment is done while the tire is rolling at the test conditions. Due to 

circumferential nonuniformities of the tire, vibrations and wheel shimmy the 

average vertical tire load accuracy can only be set with an accuracy of ±1% of the 

present tire load. 

 

The tire positioning error causes a horizontal uncertainty on the graph and 

cornering force error causes a vertical uncertainty. The error in vertical tire load 

on the other hand causes an uncertainty normal to the curve at the point of 

interest which varies along the curve. The dispersion of a point is therefore 

similar to the one shown in Figure 3.17. Another uncertainty, whose effect cannot 

be predicted directly is in cold inflation pressure. The electronic pressure gage 

has an accuracy of ±1 psi (±7 kPa) and inflation pressure is not monitored during 

the experiment. 
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Figure 3.17 Data Points and Their Dispersion on Carpet Plot 
(155 R13,180 kPa Inflation Pressure and 10km/h Test Speed) 

 

3.8 Test Results 
 

 With the test runs, the problems about the tire testing setup are corrected. 

The tire tests with the 155R13 with one textile body ply and two steel tread plies 

are performed to validate the computer model. 

 

3.8.1 Low Speed Cornering Test 
 

 The first test done on the tire that is modeled is at nominal inflation 

pressure of 180 kPa (26 psi) and 10 km/h road speed. The cornering force data is 

presented in Figure 3.18 The vertical load varies from 1500 N to 4500 N with 

500 N increments and slip angle varies from 0 to 8 degrees with 1 degree 

increment. 
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Figure 3.18 Cornering Force Characteristics of 155R13 at 180 kPa 

Cold Inflation Pressure and 10 km/h Road Speed 
 

3.8.2 Effect of Inflation Pressure on Cornering Characteristics 
 

 As mentioned in many works (Bird, et al., 1973, Drach, et al., 1991) 

cornering characteristics of a tire depends on cold inflation pressure. With 

increasing inflation pressure around rated pressure the cornering force generated 

by the tire increases at the same vertical load and slip angle, and it decreases as 

the pressure decreases. The experiments done with 10 % less (165 kPa, 24 psi) 

and 10 % more (200 kPa 29 psi) show this tendency clearly. The effect of 

inflation pressure can be seen on Figure 3.19.  
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Figure 3.19 Effect of Cold Inflation Pressure on Cornering Characteristics 

 
3.8.3 Effect of Test Speed on Cornering Force Characteristics 

 

To see the effect of roadway speed on cornering force characteristics the 

tire test is repeated at 30 and 60 km/h road speeds as well. At high vertical load 

high slip angle combinations, the tire heated up very much and permanent 

damage occurred on the tread pattern as shown in Figure 3.20. Again due to very 

high tread and sidewall temperatures on tire, the slip angle was limited to 7 

degrees. The cornering force characteristics of the tire at different road speeds are 

presented in Figure 3.21. Pottinger and coworkers (1976) in their extensive paper 

about the effect of test speed and surface curvature on cornering properties found 

out that for a speed increase from 6 mph (10 km/h) to 75 mph (120 km/h) 

cornering force shows significant increase (8 to 10 %) for all normal loads for 

slip angles up to 2 degrees, slight increase (about 5%) for 4 degrees and no 

significant change for slip angles in the range 8 to 20 degrees. The tire tested is a 

steel belted radial tire GR70-15. With these observations, which is the only 

available one in open literature, it is deduced that the decrease in cornering force 
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at high speed is due to high temperature and permanent deformation and damage 

on the tire tread. 

 
Figure 3.20 Tread Damage After High Speed High Slip Angle Test 

(Arrows Show Missing Blocks, Ellipses Show Stuck Rubber on Tire) 
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Figure 3.21 Effect of Roadway Speed on Cornering Properties 
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CHAPTER 4 

MATERIAL REPRESENTATIONS AND ELEMENT FORMULATIONS  

IN FINITE ELEMENT MODELING 

 

4.1 Introduction 

 

 Tire, made of vulcanized rubber and a reinforcing carcass, is a highly 

anisotropic, viscoelastic, and composite structure. Large strains, displacements 

and rotations encountered in normal service conditions of tire, considerable 

temperature dependent material properties of rubber and textile cords, together 

with the nonlinear stress-strain characteristics of rubber (for example Green and 

Zerna, 1960, Green and Adkins, 1960, Malvern, 1969), further complicates the 

model. Figure 4.1 shows the construction of a typical radial tire with 

reinforcement. The very high moduli of textile and steel cords when compared to 

that of rubber, micro-buckling of cords in compression still add more 

complications. Frictional contact problems are inherently nonlinear and path 

dependent. Nonlinearity in the analysis occurs partly because the contact patch 

and its pressure distribution are not known beforehand. Path dependency is a 

result of nonconservative (dissipative) character of frictional forces. In modeling 

the friction between tire and road, most researchers agree that the classical dry 

friction (Coulomb) theory is not sufficient to represent the rubber friction 

thoroughly, although they cannot propose a more general and widely accepted 

theory, modeling the actual physical situation (Sakai, 1981, Noor, 1985, Seifert, 

1998). 

 



 80

 
Figure 4.1 Construction of a Typical Radial Tire 

 

4.2. Geometric Nonlinearities 

 

4.2.1. Large Displacements and Large Strains 

 

 Under normal service conditions of tires, displacements due to footprint 

loading are quite large, and strains induced are moderately large. Furthermore, in 

cornering analysis, rigid body motion due to rolling cannot be avoided. These 

facts necessitate a geometrically nonlinear analysis. The very detailed 

mathematical treatment of geometric nonlinearities encountered in elasticity may 

be found in Green and Zerna (1960) and Green and Adkins (1960). Here only the 

theoretical foundations which are necessary for finite element formulations will 

be presented. 
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 In small displacement-small strain theory, since displacements and strains 

are very small compared to overall dimensions of the structure, there is negligible 

distinction between deformed and undeformed configurations, whereas in case of 

large displacements, and/or finite rotations, and/or finite strain, the difference 

between the undeformed (initial and mostly the unstrained) configuration and 

deformed (final) configuration cannot be neglected. In the presence of geometric 

nonlinearities, the quantities like stress and strain are either referred to initial 

configuration or present configuration. In linear theory, stress is the force per unit 

area whereas in geometrically nonlinear case, it may be the force per unit 

deformed area which is called the Cauchy (or sometimes true) stress or it may 

refer to undeformed configuration (both force and configurationwise) as in the 

second Piola-Kirchoff stress. The distinction between the material (Lagrangian) 

formulation, and spatial (Eulerian) formulation is evident too. 

 

 For the finite element analysis of pneumatic tires, material (Lagrangian) 

description is suitable for most of the cases since the undeformed configuration 

and second Piola-Kirchhoff stress as a function of strain (or strain rate) are 

known. On the other hand, for cornering analysis, it may be advantageous to 

model the rigid body rotation of the tire by spatial (Eulerian) description. It 

should be noted that, even for linear elastic material response, the large 

displacement, large strain formulation yields nonlinear set of equations.  

 

 Since displacement formulation (and sometimes mixed formulation for 

incompressible materials) is used in finite element applications, the quantities 

like stress and strain will be expressed in terms of displacements, although other 

forms exist too. 

 

 The equilibrium equations are 

∂σ

∂
ij

j
ix

q+ = 0          (4.1) 
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where σ is the true (Cauchy) stress tensor and q is the distributed load per unit 

volume in deformed configuration. This equilibrium equation is equivalent to the 

virtual work expression as in the case of linear theory, which is 

σ
∂δ
∂

δ δij
i

j
i i i isvv

u
x

dv q u dv t u ds= + ∫∫∫       (4.2) 

here, t is the boundary tarction and the integrations are carried over the current 

(deformed) configuration. An expression referring to the known undeformed 

configuration would be more useful than the expression referring to the deformed 

configuration, which is not yet determined. Using the Jacobian of deformation 

which is 

J dv
dV

x
X

Fi

j
ij= = =

∂
∂

        (4.3) 

the virtual work expression may be referred to undeformed configuration as 

J u
x

dV Q u dV T u dSij
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i i i iSVV
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=

=
         (4.5) 

 The second Piola-Kirchoff stress tensor S is defined as 

J F S Fij ik kl jlσ =          (4.6) 

 The nonlinear strain tensor, referred as Green-Lagrange strain tensor in 

terms of displacements is 
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      (4.7) 

where, the second order term is negligible for infinitesimal strain and 

displacement analysis, therefore Green-Lagrange strain boils down to 

infinitesimal strain. 
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Taking the variation of Green-Lagrange strain tensor and manipulating 

the virtual work expression, each quantity is referred to undeformed 

configuration as 

S E dV Q u dV T u dSij ij i i i iSVV
δ δ δ= + ∫∫∫       (4.8) 

using the material constitutive relation, the second Piola-Kichhoff stress tensor 

may be expressed in terms of Green-Lagrange strain tensor since both refer to the 

global axes in undeformed configuration. For linear elastic material for example, 

the constitutive equation is 

S L Ekl klij ij=          (4.9) 

and the virtual work expression becomes  

E L E dV Q u dV T u dSij ijkl kl i i i iSVV
δ δ δ= + ∫∫∫      (4.10) 

which is a nonlinear set of equations even for linear elastic materials. 

 

4.2.2. Pressure Loading in Large Displacement and Rotation Analysis 

 

 In geometrically nonlinear analysis, pressure loads are applied on the 

deformed structure (present configuration), therefore the equivalent nodal loads 

are dependent on the nodal displacements. This dependency leads to additional 

contributions to the stiffness matrix in the solution procedure. The external 

virtual work is 

δ δW u n pdAE
i iA

= ∫         (4.11) 

where A is the surface on which the pressure load p is applied, n is the normal to 

this surface pointing into the material, δu is the virtual displacement field. In a 

three dimensional space, the expression ndA may be rewritten as  

n dA
x
g

x
h

dgdhi
j k

ijk=
∂

∂
∂
∂

ε        (4.12) 

where x is the current position of a point on the surface and the surface 

parametric coordinates (g, h) are chosen to give the correct sign to n through the 

cross product. The incremental external virtual work is then given by 
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which is nonlinear. 

 

4.2.3 Finite Element Formulation for Geometric Nonlinearities 

 

 For most of the problems, if not enforced by other reasons, displacement 

formulation is used for finite element formulation. The displacement at a point 

within a definite element is therefore 

( )u N X ui
e

i
e

k
e=         (4.14) 

where the underlined quantities refer to the nodes of the element under 

consideration. ue is the nodal displacement vector of the element and Ni
e(Xk) is 

the interpolation (shape) function components of the element evaluated at point 

Xk. With the discretization of nodal displacements, the virtual work expression 

written in terms of displacements can be expressed as functions of nodal 

displacements and interpolation function of the elements. The Green-Lagrange 

strain tensor takes the form 
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e

ij
e

ji
e

ki
e e

kj
e e= + +

1
2
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where 

B N
Xij

e i
e

j
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∂

         (4.16) 

The virtual work expression is therefore converted into the following discretized 

form 

( )1
2

S B B B uB B uB dV u P uij ij ji ik kj kj ki
e

Ve e
+ + +⎡

⎣⎢
⎤
⎦⎥

=∫∑ δ δ    (4.17) 

where P is the consistent nodal load to account for external body forces and 

surface tractions. The equivalent nodal parameters for the second Piola-Kirchoff 

stress tensor can only be inserted if the material constitutive law is known and 

can be solved for nodal displacements. For linear elastic materials, 
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( )S L B B B uB uij ijkl kl lk mk ml= + +
1
2

      (4.18) 

The system of equations is therefore expressed as 

K u P QtΔ = −          (4.19) 

where the internal load vector Q is 

( )Q S B B B uB B uB dVij ij ji ki kj kj ki
e

Ve e
= + + +∫∑ 1

2
    (4.20) 

The tangent stiffness matrix Kt accounts for elastic stiffness of the material, 

initial stress stiffness and geometric stiffness, therefore it depends on nodal 

displacements. It can be decomposed as 

K K K Kt e g s= + +         (4.21) 

where Ke is the elastic stiffness matrix defined as 

K D dVe
ij imn mnpq pqjV
= ∫ β β0 0        (4.22) 

where βijk
0 is the constant symmetric shape function gradient, Dmnpq is the 

material tangent coefficients. Kg is the initial displacement (geometric) stiffness 

matrix, defined as 

( )K D D D dVg
ij imn

u
mnpq pqj

u
imn

u
mnpq pqj imn mnpq pqj

u

V
= + +∫ β β β β β β0 0   (4.23) 

where βijk
u is the displacement dependent symmetric shape function gradient. Ks 

is the initial stress stiffness matrix, defined as 

K N N S dVs
ij i k j m jmV
= ∫ , ,        (4.24) 

where Ni,k is the shape function gradient matrix. 

 

4.3 Modeling the Composite Material Properties and Anisotropic Material 

Behavior 

 

4.3.1 Some Approaches in Literature to Model Unidirectional Long Fiber 

Composites 
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 Research on determination of stress-strain relationships of composites is 

rather old. One of the earliest approaches is to assume the composite as an 

orthotropic homogeneous material. Furthermore the deformations and strains are 

assumed to be small and Hooke’s law is obeyed for all the constituents of the 

composite. The material elastic constants are either determined experimentally or 

by some calculations under rather strict assumptions. The method of estimating 

the elastic constants is very similar to determination of equivalent spring stiffness 

when springs are in parallel or in series (Aston et al., 1969, Parratt, 1972, Walter, 

1978). This approach is a useful tool which yields quite precise results as long as 

the assumptions are not violated severely. The method is extended to Halpin-Tsai 

composite material models, which contain empirical factors to account for slight 

violations of strict assumptions. Halpin-Tsai composite material models include 

long and short fiber, long and short ribbon and particulate composites 

(ABAQUS/Pre Version 5.4-1 User’s Manual). This approach is used in some 

recent works as well to model the tire composites and the analyses yielded results 

those are in good agreement with experiments (Tanner, 1996a, 1996b, Davis, 

1997). 

 

 Tire composites, having rubber as the matrix, and textile and/or steel 

reinforcement violate the assumptions of the above stated averaging methods as: 

 

1.  The strains are assumed to be small (infinitesimal to be exact) and material 

remains linear elastic. Although nonlinear stress strain relationship of rubber 

may be approximated by a linear elastic constitutive law for small strains, 

microbuckling of reinforcing fibers in compression cannot be modeled by a 

linear elastic law. 

2.  Due to large difference between the matrix and reinforcement moduli, 

averaging has great impact on local properties like stresses on reinforcement. 
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 Furthermore, averaging, by itself is an approximation which introduces 

considerable error if proper care is not taken on element size in finite element 

modeling. Additional effort is required for averaging prior to analysis and to 

recover the stress distributions in the individual constituents. 

 

The determination of elastic properties of twisted filaments from the 

extensive work of Walter (1978) is applicable to the models where averaging is 

not used. The effective Young’s modulus of twisted filaments in tension is 

estimated as 

E E
R Tc = +1 4 2 2 2π

        (4.25) 

where Ec is the effective modulus of twisted cords in tension, E is the non-twisted 

elastic modulus, R is the yarn radius and T is the twist per unit length. 

 

4.3.2 Initiation of Rebar Concept 

 

 The most common composite which violates the rule of mixtures is 

concrete reinforced by steel rods. Since concrete cannot be modeled by a simple 

linear elastic constitutive law, Ngo et al. (1967) proposed modeling steel 

reinforced concrete beam by superimposing one dimensional bar elements on 

elements modeling concrete. The bar and concrete elements satisfy the 

displacements at the common nodes and they are compatible elements. Watanabe, 

et al. (1983) applied the same approach to the finite element modeling of bias-ply 

motorcycle tires. Although the concept is simple and very useful, this method has 

a serious disadvantage. The location and orientation of reinforcing cords affect 

the finite element discretization of the model. This disadvantage becomes more 

serious when the number of the reinforcing cords are high as in the case of tires. 

 

 The obvious advantage of superimposing reinforcing bars on a matrix is 

that, the matrix and reinforcement have different constitutive equations (material 

laws) as well as may have different failure criteria (like cracking in concrete and 
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yielding in steel reinforcement). This advantage led to the development of a new 

concept which is named as rebar (reinforcing bars). In some finite element 

softwares rebar is implemented as an option to the element (like ABAQUS) 

which inserts different reinforcing material into the matrix, having its own 

material properties, fiber orientation and thickness, whereas others formulate the 

same concept with special elements called rebar (like ANSYS and MARC). In 

case of having separate rebar elements, the rebar element is superimposed to 

matrix element, which means, the nodal displacements of the rebar and matrix 

elements are the same. Originally, rebar concept was restricted to two 

dimensional cases and mostly small deformations, now the rebar elements are 

evolved to model three dimensional cases with large strain and/or with twist. 

Several layers of reinforcement having different fiber orientations and/or material 

properties can be modeled within a single element precisely, which reduces the 

effort of discretization and computation. The bending effects in the bars are 

neglected in most of the rebar formulations since reinforcement diameters are 

usually small when compared to structural dimensions.  

 

4.3.3 Unidirectional Fibrous Composite Material Modeling in ABAQUS 

Standard: *REBAR Option 

 

 Rebar option is used to define the reinforcing in elements, such as steel 

reinforcing bars in concrete. It can be used for beam, shell and solid (continuum) 

elements. The material properties of reinforcing elements are distinct from the 

underlying elements and are defined separately. For three dimensional continuum 

elements, either a single reinforcement bar or a layer of reinforcements may be 

defined. Besides the material properties, the cross-sectional area of each 

reinforcing bar, spacing between them, orientation of the reinforcing bars within 

the element, isoparametric direction and distance of reinforcement from the 

relevant element edges are defined (ABAQUS/Standard, 1994b).  
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 The formulation of reinforcing bars in continuum (three dimensional 

solid) elements is presented. The volume of integration at a Gauss point is 

(ABAQUS, Theory 1995): 

ΔV A
S r r

Wr

r
N= ×

∂
∂

∂
∂

X X

1 2

       (4.25) 

where ri is the isoparametric coordinates of the surface of reinforcement, Ar is the 

cross sectional area of each reinforcing element, Sr is the spacing between them, 

WN is the Gauss weighting associated with the integration point, X is the position 

of the Gauss point and 

∂
∂

∂
∂

∂

∂
X
r

X
g

g
r

i

m

i

j

j

m

=         (4.26) 

where gi is the isoparametric coordinates of the basic finite element. In above 

expressions, all quantities are taken in reference configuration, therefore changes 

in the cross sectional area of the reinforcing elements or spacing between them 

are ignored in large strain analysis. 

 

 The strain in the reinforcing elements is 

ε = ⎛
⎝⎜

⎞
⎠⎟

1
2

ln g
G

         (4.27) 

where 

g dL

G dL

=

=

2

0
2
         (4.28) 

s being a material coordinate that measures the distance along the rebar in 

current configuration and t being the isoparametric coordinate along the rebar, 

ds gdt=          (4.29) 

The first variation of strain is 

δε
∂
∂

∂δ
∂

=
x
s

u
s

i i          (4.30) 

and the second variation is 
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d u
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∂δ
∂

∂
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∂
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∂
= − 2      (4.31) 

By using the material constitutive law, stresses may be expressed in terms of 

strains and the virtual work expression for a rebar element, similar to Equation 

4.8 may be obtained, which in discretized form resembles Equation 4.17. Since 

the forms of these equations depend on constitutive law of the material in 

concern, they are not derived here. 

 

4.3.4 Unidirectional Fibrous Composite Material Modeling in MARC: Rebar 

Elements 

 

 In MARC, rebar elements are isoparametric empty blocks which contain 

reinforcing bars (modeling the carcass in case of tires) running in certain pattern 

(MARC, 1994a and MARC, 1997b). The reinforcing bars have axial stiffness and 

are represented as layers with equivalent thickness(es) through the height of the 

element. The rebar elements are used in conjunction with a compatible element 

which models the matrix (rubber in case of tires) with the same connectivity. In 

MARC K6.2, the rebar elements are quadratic elements with midnodes whereas 

in versions K7.1 and K7.2, the linear ones are added as well. 

 

 X being the position of a material point in reference configuration, and x 

being the position vector of the same point in deformed configuration, u being 

the displacement of material point from initial position to the final position, the 

Green-Lagrange strain tensor in terms of displacements is 

E u
X

u
X

u
X

u
Xij

i

j

j

i

m

i

m

j

= + +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
2

∂
∂

∂

∂
∂
∂

∂
∂

      (4.33) 

The right Cauchy-Green deformation tensor is 

C x
X

x
Xij

m

i

m

j

=
∂
∂

∂
∂

        (4.34) 
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The orientation of reinforcing cords is denoted by the unit vector a. The axial 

stretch of the cord λa is then 

λ a ij i jC a a2 =          (4.35) 

The axial Green-Lagrange strain of the cord is then 

( )Ea a= −
1
2

12λ         (4.36) 

The weak formulation of one dimensional reinforcing cord is therefore 

Π( , )u u S E dV Wi i a a extV
∂ ∂= −∫       (4.37) 

where Sa is the axial second Piola-Kichoff stress on the cord, u is the 

displacement vector, V is the volume of cords and Wext is the virtual work of 

external forces. For the one dimensional reinforcing cord, the lateral stresses are 

zero and the lateral stretches depend only on the axial stretch λa as  

( )
λ

λ
=

det F

a

         (4.38) 

which implies that Sa is a function of λa only. 

 

 Incremental linearization of weak formulation yields 

ΔΠ Δ Δ∂( , )u u dS
dE

E E S E dVi i
a

a
a a a aV

∂ ∂= +
⎛
⎝
⎜

⎞
⎠
⎟∫      (4.39) 

where dSa/dEa may be interpreted as the effective Young’s modulus of the cord at 

that increment. 

 

 The planar and axisymmetric rebar elements have 2 Gauss integration 

points per reinforcement layer whereas three-dimensional ones have four points 

per layer. Typical axisymmetric rebar element configurations used in MARC are 

shown in Figure 4.2 and typical three-dimensional ones are presented in Figure 

4.3. 
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Figure 4.2 Axisymmetric, Linear and Quadratic Rebar Elements in MARC 
 

 

Figure 4.3 Three Dimensional, Linear and Quadratic Rebar Elements in MARC 
 

 The Green-Lagrange strain at a typical integration point is 

( )E Cij ij ij= −
1
2

δ         (4.40) 

and its variation 

δ δ δE C B uij ij ijm m= =
1
2

       (4.41) 

where B is the standard beta matrix in finite element implementation of total 

Lagrangian formulation for large deformation and u  is the nodal displacement 

vector. B can be decomposed as 
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B B B B u B Bijm ijm
L

ijm
NL

ijm
L

n ikn
L1

jkm
L= + = + 2      (4.42) 

where BL is the linear part and BNL is the nonlinear part of beta matrix. BL1 and 

BL2 are two linear operators similar to BL. 

δ δ δ δE a a C a a E a a B ua i j ij i j ij i j ijm m= = =
1
2

     (4.43) 

Linearization yields 

Δδ ΔE a a B B u ua i j ikn
L

jkm
L

n m= 1 2 δ       (4.44) 

Therefore, the elemental stiffness matrix and internal force vector of a rebar 

element in MARC are 

( ) ( )K dS
dE

B B S a a B B dVmn
a

a
A m A n a i j ikn

L
jkm

L e

Ve
= +

⎛
⎝
⎜

⎞
⎠
⎟∫ 1 2    (4.45) 

( )F S B dVm a A m
e

Ve

int = ∫        (4.46) 

where 

( )B a a BA m i j ijm=         (4.47) 

 

 The above formulation requires the components of the unit tangent vector 

of rebar element at each integration point, the equivalent thickness of 

reinforcement along the thickness direction (the ratio of total area of reinforcing 

members to element length, which may be interpreted as the uniform equivalent 

thickness), the hollow element thickness and position of reinforcing layer with 

respect to element thickness, which are supplied by the user subroutine REBAR of 

the MARC program. The material properties and number of rebar layers are 

supplied by the model input file.  

 

 The axisymmetric quadratic rebar element (element 48) is an eight-node 

quadrilateral in which user may place single strain members. It is normally used 

in conjunction with an eight-node axisymmetric continuum element. It is 

assumed that several layers of rebar are present and the number is determined by 

the user. Each layer is similar to 1-2 direction of the element although the 
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direction of the reinforcing cords are arbitrary. On each layer, two Gauss 

integration points are used. The axial strain along the rebar is defined as 

ε
∂
∂

∂
∂

∂
∂θ θ θ θ= + + +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

u
x

a a u
R

a a u
x

a u
x

a u
R

a u
R
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j
i j

R i

j
j

i

k
k

R R1
2

   (4.48) 

where i, j, k are summed over the range 1 to 2 (corresponding to z and r) and ai 

are the direction cosines of the reinforcing bars in the global coordinates. The 

linear version of this element is included in version K7, which is element number 

144. Element number 145 is similar to 144 but it considers torsional strains in the 

axisymmetric structure as well. 

 

 The three dimensional quadratic rebar element (element 23) is an 

isoparametric three dimensional empty block which contains reinforcing bars 

running in certain patterns. This element is normally used in conjunction with 20-

node brick element which represents the matrix (rubber in case of tires). A 

maximum of five layers may be used for each element and each layer contains 

four Gauss integration points. The first layer is the one closest to the 1-2-3-4 face 

of the element. The linear version of this element, element number 146 is 

included in version K7 of MARC. 

 

 In MARC, by the user subroutine REBAR, which is accessed during each 

incremental step for every integration point in an element, the current position of 

the reinforcing elements are controlled. For large strain analysis, the difference 

between initial and final cross sectional area of the reinforcing fibers may be 

considered by adding the appropriate coding to the user subroutine as well. Some 

rebar subroutines used in research are presented in Appendix A. 

 

4.3.5. Further Enhancements to Rebar Concept, Record Elements 

 

The local mechanics (birdcaging in compression, which is termed as 

microbuckling as well) including the effect of twist and number of strands are 
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modeled by new reinforcing cord (record) elements. The nonlinear coupling 

between the extensional and twist behavior is modeled too. This model is 

proposed for commercial finite element codes by Padovan and associates (1998). 

 

4.4 Nonlinear Elasticity and Nearly Incompressible Behavior of Rubber 

 

4.4.1 Introductory Definitions 

 

Rubber, the matrix material of tire does not exhibit linear stress-strain 

relation like Hookean materials and its force-deflection behavior even in uniaxial 

tension deviates substantially from a straight line which characterizes rubber as a 

highly nonlinear material. Furthermore nonreinforced rubber can be strained up 

to 1000 %. 

 

In uniaxial tension, the stretch ratio (or simply stretch) is defined as the 

ratio of current length of the specimen to the initial length of it as 

λ =
L
L0

         (4.49) 

or substituting  

L L u= +0          (4.50) 

where u is displacement, 

λ = +1
0

u
L

         (4.51) 

 In large deformation analysis, Green-Lagrange strain is used, which is for 

uniaxial case 

( )E = −
1
2

12λ          (4.52) 

with its work conjugate being second Piola-Kirchoff stress S for incompressible 

case is 
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         (4.53) 

 For the general three-dimensional loading, the stress invariants which are 

functions of stretch ratios are 
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       (4.54) 

For perfectly incompressible materials, I3=1. 

 

4.4.2 Time-Independent Nonlinear Elasticity of Rubber 

 

Rubber is a polymer and it consists of long chains of simple (monomeric) 

molecules with all elements of each chain linked tightly together. If there were no 

cross links between the various chains, they could slide over each other. This 

would permit permanent (plastic) deformations to occur which can be observed in 

rubber before vulcanization. Due to the existence of cross links, after a certain 

amount of sliding, the cross links will be stressed and the sliding motion is 

stopped. The molecular chains of a polymer are not static but they are in 

continuous thermal motion and have a tendency to get curled up. This tendency 

causes the two neighboring chains to come as close as possible which is the 

reason that causes the vulcanized rubber to have a preferred (definite) shape.  

 

For gradually increasing deformation, the stress will increase gradually 

but as the molecules get farther apart, they can show less resistance to 

deformation and there is a decreasing tendency in stress, until the chains start 

approaching fully extended position where stress starts to increase very sharply 

which is followed by braking of the chains which leads to macroscopic fracture 

(MARC, 1984a, Osswald, 1996). 
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Further details of microscopic deformation mechanics of rubber is out of 

scope of this thesis and, macroscopic behavior of rubber deformation will be 

examined beyond this point by phenomenological considerations. 

 

Using the arguments of statistical mechanics and thermodynamics, it is 

possible to approximate Helmholtz free energy roughly (which reduces to elastic 

strain energy under constant temperature) with the condition of incompressibility. 

 

Definition of stress invariants and the third invariant being identically 

unity for incompressible isotropic (in initial configuration) materials results the 

strain energy function to be defined purely in terms of the two strain invariants as 

( )W W I I= 1 2,         (4.55) 

There exist a number of nonlinear constitutive models for rubber in the 

literature. Most of the proposed material models are characterized by different 

forms of their strain energy (density) functions. For a linear elastic material, the 

strain energy function takes the form 

W L E Eijmn ij mn=
1
2

        (4.56) 

where Lijmn are the 21 independent elastic constants for the most general linear 

anisotropic elastic medium and E is the Green-Lagrange strain tensor. The 

components of Cauchy stress tensor and material elasticity tangent are obtained 

by 

σ
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∂
∂

∂
∂ ∂

∂
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D W
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= =

= =

2

4
2 2        (4.57) 

for the hyperelastic materials. 

 

 For rubber undergoing large deformations, Equation 4.56 cannot model 

the actual behavior. The simplest model for rubber elasticity is the Neo-Hookeian 

model represented as 
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W C I= −10 1 3( )         (4.58) 

which exhibits a constant shear modulus and good correlation with the 

experimental data up to 40% strain in uniaxial tension and up to 90% strains in 

simple shear. 

 

 The earliest material model for the nonlinear elasticity of rubber, by 

Mooney is 

W C I C I= − + −10 1 01 23 3( ) ( )        (4.59) 

which shows good agreement with tensile test data up to 250 % strains as well as 

stiffening behavior in compression. This model fails to account for stiffening of 

the material at large tensile strains (Osswald, 1996, MARC, 1996, MARC, 

1997a). Comparison of theoretical and experimental stress-stretch curve for 

extension in Figure 4.4 (Osswald, 1996) reveals that Mooney-Rivlin material 

model approximates the elastic behavior of rubber up to a stretch of 3.5. This 

figure verifies that error introduced by assuming linear elastic behavior for rubber 

in stretches not exceeding 1.5 is rather small. 

 

 Some improvements on the model proposed by Mooney are all known as 

Mooney-Rivlin material models. To name some of them, the three term Mooney-

Rivlin model is 

W C I C I C I I= − + − + − −10 1 01 2 11 1 23 3 3 3( ) ( ) ( )( )     (4.60) 

Signiorini model, 

W C I C I C I= − + − + −10 1 01 2 20 1
23 3 3( ) ( ) ( )      (4.61) 

Third order invariant 

W C I C I C I I C I= − + − + − − + −10 1 01 2 11 1 2 20 1
23 3 3 3 3( ) ( ) ( )( ) ( )   (4.62) 

Third order deformation or also known as James-Green-Simpson 

W C I C I C I I C I C I= − + − + − − + − + −10 1 01 2 11 1 2 20 1
2

30 1
33 3 3 3 3 3( ) ( ) ( )( ) ( ) ( )  (4.63) 

and the Yeoh model which depends only on first strain invariant 

W C I C I C I= − + − + −10 1 20 1
2

30 1
33 3 3( ) ( ) ( )      (4.64) 
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Figure 4.4 Theoretical and Experimental Stress Stretch Curve 

for Natural Rubber (Osswald, 1996) 

 

The most general form of strain energy function proposed by Ogden in 

terms of principal stretches is 

( )W J K Jn

nn

N n
n n n= + + − + −

⎛

⎝
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− −
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α α α3

1 2 3

1
3

2

1

3 4 5 1.    (4.65) 

from which Neo-Hookean and Mooney-Rivlin models can be recovered as 

special cases. In Ogden model, μn and αn are the material constants determined 

by curve fitting to experimental data and K is the bulk modulus of the material. 

Ogden model yields good results up to 700% strain but requires careful and 

precise determination of the constants. Mooney-Rivlin models assume the 

material to be incompressible whereas Ogden model considers some 

compressibility by the inclusion of the bulk modulus of the material into the 

model. 
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 Determination of stresses from the strain energy function and 

incompressibility constraint may be performed in two ways. In the first method, 

one (or two in case of axisymmetric problems) of the stretch ratios may be 

eliminated by using the incompressibility condition (and eventually symmetry) 

and the stresses in the remaining directions may be determined by the 

differentiation of the strain energy with respect to stretch ratios. The second 

method is adding the incompressibility constraint as a Lagrange multiplier and 

the value of the multiplier is determined later with the condition of prescribed 

stress on one or more surfaces. It should be mentioned that, for an incompressible 

material, the stresses cannot be determined if only stretch ratios are known, due 

to the fact commonly termed as “hydrostatic pressure” which causes no strain in 

the material. 

 

 Tire, having a reinforcing carcass in it, is exposed strains less than 40% 

under normal service conditions therefore in most tire models in literature, if not 

a linear elastic approximation is used, Mooney material model is preferred. The 

two coefficients of Mooney model may be obtained by simple tension test. The 

test specimen has 2 mm thickness and the shape and dimension of the specimen is 

shown in Figure 4.5. The measurement temperature is room temperature (20°C), 

crosshead speed is 5.08 mm/min and the coefficients of the two-term model can 

be obtained by 

( )P A C C= −
⎛

⎝
⎜

⎞

⎠
⎟ +2 1 1

0
1
3 1 10 01λ

λ       (4.66) 

and deformation state is evaluated by 
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therefore the plot of reduced stress [P/2A0(λ1-1/λ1
2)] versus 1/λ usually referred 

as a Mooney Plot yields a straight line with slope C01 and y-intercept C10. 

 
Figure 4.5 ASTM Tension Test Specimen (Dimensions in mm, Thickness 2 mm) 

 

4.4.3. Herrmann Formulation for Incompressible and Nearly Incompressible 

Material Representation in Finite Element Programs 

 

 The nearly incompressible and incompressible material representations 

including various types of Mooney and Ogden material models require the use of 

an augmented variational principle based on the Herrmann (1965) formulation. 

 

 The instantaneous material behavior is assumed to be isotropic and 

elastic. The total Green-Lagrange strain is then; 

E E Eij ij
el

ij
nel= +         (4.68) 

where superscript el refers to elastic strain components and nel refers to 

nonelastic ones like creep, thermal or plastic. The elastic constitutive theory is 

( )S G E Hij ij
el

ij= +2 ν δ         (4 69) 

where S is the second Piola-Kirchoff stress, G is the shear modulus υ is the 

Poisson’s ratio (very close or equal to 0.5) and H is the Herrmann mean pressure 

variable defined as 

( )
H

G
kk=
+

σ
ν2 1

         (4.70) 

The equilibrium equation is 

∂σ

∂
ij

j
ix

q+ = 0          (4.71) 
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where σ is the Cauchy stress and q is the body force per unit volume. The 

dilatation relation is 

( )E Hkk
el − − =1 2 0ν         (4.72) 

 Introducing the virtual displacement field δu on the equilibrium equation 

and a variation on the dilatation relation 2νGδH, the augmented virtual work 

equation is 

( )( )∂σ

∂
δ ν ν δij

j
i i kk kk

nel

Vv x
q u dv E E H G HdV+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ − − − − =∫∫ 1 2 2 0   (4.73) 

where v is the current volume and V is the initial volume occupied. 

 

Applying Gauss theorem with surface tractions as 

t ni ij j= σ          (4.74) 

yields 
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     (4.75) 

where 

( )δ δ δ δ δE u u u u u uij i j j i k i k j k i k j= + + +
1
2 , , , , , ,      (4.76) 

is the first variation of Green-Lagrange strain. 

 

 The elastic constitutive theory substituted into the equation yields 

( )( )

( )

2 1 2

2

G E E H E E H H H dV

T u dS Q u dV G E E E H dV

ij ij kk kk
V

i i
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ij kk
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V

δ ν δ ν δ ν ν δ

δ δ δ ν δ

+ + − − =

+ + +

∫
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   (4.77) 

which includes large displacement and large strain effects and is to be solved 

incrementally by the program. Taylor series expansion of the equation and 

neglecting the higher order displacement terms yields equations linear in terms of 

displacements. The incremental form of augmented variational principle is then 



 103

( )

Δ
Δ
Δ
Δ
Δ
Δ
Δ

Δ
Δ
Δ
Δ
Δ
Δ
Δ

S
S
S
S
S
S
I

E
E
E
E
E
E
H

11

22

33

12

23

31

11

22

33

12

23

31

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 0 5 0 0
0 0 0 0 0 0 5 0

0 0 0 1 2

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

=

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎧

⎨

⎪
⎪
⎪
⎪

⎩

ν
ν
ν

ν ν ν ν ν

.
.

.

⎪
⎪
⎪
⎪

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

   (4.78) 

where the strain increments are 

Δ Δ Δ Δ ΔE u u u u u uij i j j i k i k j k j k i= + + +, , , , , ,      (4.79) 

and ΔI is the increment of dilatation restraint force. The dilatation restraint force 

is expressed as 

( )( )I G E E H E E H H H dVij ij kk kk
V

= + + − −∫ 2 1 2δ ν δ ν δ ν ν δ    (4 80) 

 The temperature dependent material behavior may be included in the 

above formulation as well. 

 

4.5 Contact and Friction Models in Finite Element Programs  

 

4.5.1 Deformable to Rigid Body Contact Model in ABAQUS 

 

 In ABAQUS although *CONTACT PAIR/*CONTACT SURFACE 

option exists for automatic handling of contact, the special purpose contact 

elements (stress/displacement rigid surface elements) to model the contact 

between a rigid body and three dimensional continuum elements are utilized. The 

element used in static tire contact analysis is a five node element (IRS4) in 

combination with a Bézier surface. The element shares the four nodes on the free 

surface of the linear brick element and the fifth node, which is a control node is 

on the rigid surface, to which the deformable body will contact. The active 

degrees-of-freedom at surface nodes are only three orthogonal translations and 

the fifth control node has rotational degrees of freedom too. Distance of a node to 

the rigid surface is measured by the outward normal of the rigid surface passing 
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through that node. In case the distance is negative, a nonlinear contact force is 

applied to the node so that it is within the prescribed tolerance to the rigid 

surface. 

 

4.5.2 Coulomb Friction Model in ABAQUS 

 

 The equivalent frictional stress is evaluated by 

τ τ τfric = +1
2

2
2         (4.81) 

where τi are the frictional stresses in the principal sliding directions. Using 

Coulomb friction model, no relative motion is possible with 

τ τ μfric crit p≤ =         (4.82) 

In ABAQUS, it is possible to put a limit on the critical stress shear stress as 

( )τ μ τcrit p= min , max         (4.83) 

where τmax is the flow stress of the material specified by the user. This limit is 

intended for more realistic metal forming simulations and may be useful in 

modeling the tire behavior in a locked wheel. 

 

4.5.3 Deformable to Rigid Body Contact Model in MARC 

 

 In MARC, a variable boundary condition method is used to model the 

contact with rigid surfaces. When a node touches to a rigid surface, a local 

transformation of coordinates is made into a tangential and a normal direction to 

the rigid surface. The displacement of the node in normal direction is equal to the 

rigid surface displacement in the same direction as imposed as a boundary 

condition. 

 

 The basic algorithm of MARC rigid contact may be summarized as 

follows: 

1.  At the start of an increment, all nodes that are candidates to contact nodes are 

checked for the rigid surface(s) and flagged if so. 
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2.  Transformations and imposed displacements are determined for each node that 

touches to a rigid surface. The rigid body segment to which a node is touching 

is checked. 

3.  One increment of the problem is solved iteratively and values for displacement 

increments are calculated. Step 2 is repeated at each iteration for possible 

changes in rigid body segments. 

4.  After the solution has converged, the nodal forces at the contact nodes are 

checked. For tensile nodal contact forces, the node is released from contact 

surface and step 3 is repeated. 

5.  All free boundaries are checked for contact. If any free node is in contact with 

a rigid surface, the increment size is reduced such that only one new node 

touches to rigid surface and the process is restarted at step 3. 

6.  If fixed increment size is specified, the current increment is split into two. 

7.  Step 1 is returned. 

 

 The above stated basic contact algorithm is enhanced by advanced 

techniques to improve the performance of the program especially in large 

problems with complex shaped and/or a large number of rigid bodies (MARC, 

1984b). 

 

4.5.4 Friction Models in MARC 

 

 The Coulomb friction force is modeled by fictitious nonlinear springs in 

MARC as 

F F v
Ct n

r= − ⎛
⎝⎜

⎞
⎠⎟

μ
π
2 atan         (4.84) 

and the friction stress is modeled by 

σ μσ
πt n

rv
C

= − ⎛
⎝⎜

⎞
⎠⎟

2 atan        (4.85) 

where, Fn is the normal contact force, σn is the normal contact stress, μ is the 

coefficient of friction, vr is the relative sliding velocity and C is the relative 
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sliding velocity below which sticking is simulated. Coulomb friction may be 

based on nodal forces or nodal stresses whereas shear friction can only be based 

on nodal stresses which are related to the yield stress of the material. It is 

suggested that C is selected in between 1 to 10 percent of relative sliding 

velocity. C being too small causes bad convergence due to very sharp change in 

frictional force at very low relative sliding velocities whereas being too large 

causes the effect of friction to diminish for practical sliding velocities. For 

various values of C, the relative friction force versus sliding velocity is plotted in 

Figure 4.6. For other types of friction models, the friction law may be defined by 

user subroutine. The most general form of the friction law is then; 

( )μ μ σ= x, , , ,f T vn r y         (4.86) 

where x is the position of the point where friction is calculated, fn is the normal 

force at the point, T is the temperature at the point, vr is the relative sliding 

velocity at the point and σy is the flow stress of the material. 

 

 There are other friction models in MARC K7.2, among which the stick-

slip friction model is particularly useful in tire models. In stick-slip model, 

instead of allowing small slips at low relative velocities, sticking condition with 

static coefficient of friction (which is different than sliding coefficient of friction) 

is simulated. Stick-slip friction model brings a more realistic friction model in 

return has increased solution time due to increased nonlinearity. α is the ratio of 

static to sliding coefficient of friction, β is the stick-to-slip transition tolerance ε 

is a small fixed value so that βε ≈ 0 and e is the user defined friction force 

tolerance such that the ratio of friction force in present step to previous step 

cannot exceed as 

1 11− < < +−e f
f

ef
i

f
i         (4.87) 
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Figure 4.6 Regularized Coulomb Friction for Various C Values (μ=1 and Fn=1) 

 
Figure 4.7 Stick-Slip Friction Model in MARC 

 

 In MARC, frictional forces are applied as distributed loads. The friction 

equations are implicit functions of the displacement increments therefore during 

the iterative solution procedure, they have contribution to the tangent stiffness 

matrix. For all elements that contain contact surfaces with friction, the stresses, 

temperature and flow stresses are extrapolated to the nodes. For each surface, the 

nodal normal stresses, nodal relative sliding velocities are calculated and 

frictional force and stiffness contributions are numerically integrated using 

trapezoidal rule. The analysis starts with zero sliding velocity assumption and in 
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each subsequent increment the relative sliding velocity of previous solution is 

used as a starting point (MARC, 1984b, 1997a). 

 

4.6 Redefining a Mesh on Deformed Geometry 

 

 For large elastic-plastic deformations, updated Lagrange approach which 

considers the state at the beginning of the increment as the initial configuration is 

utilized. However, due to large deformations encountered, the finite element 

mesh may degenerate strongly which causes the results obtained be rather poor, 

or even some elements may locally turn inside out which makes the further 

analysis impossible. Redefining a mesh on deformed geometry idea which is 

termed as rezoning initiated from this necessity. The new mesh defines the same 

physical problem as the updated old mesh. The idea behind rezoning has three 

main steps. 

 

1.  Definition of a Continuous Field for All Variables: 

For rezoning, a continuous field for all variables has to be formed. Among the 

existing procedures to construct such a field, the local smoothing with 

triangularization was shown to be the most suitable one (Gelten and Jong, 1984). 

The three phases of this local smoothing  

a.  Subdividing the local mesh into triangles (for two dimensional models) or 

tetrahedrons (for three dimensional models) and storing the connectivity of 

this subdivision. For quadrilateral and brick elements some extra nodal points 

need to be defined. 

b.  The nodes in new mesh are determined in relation to triangles or tetrahedrons. 

The triangular coordinates are used for this purpose. 

c.  Extrapolation of all element variables to nodal point variables by local 

smoothing technique which evaluates the mean of the nodal value of the 

elements connected to that node. 
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 The averaging technique to define the field variables in the continuum 

assumes the continuum to be homogeneous. In case of tires with different layers 

of reinforcement, the reinforcement causes discontinuities which has a great 

impact on averaging. To obtain reliable results, rubber matrix having different 

elastic properties and textile and steel reinforcement must occupy different spatial 

locations. In physical tire, since these materials work together, proper multi-point 

constraints (tyings) must be defined among the different materials to achieve the 

real working conditions. 

 

2.  Definition of a New Mesh: 

The new mesh should cover in principle the same area or volume as the old 

deformed mesh does. The new mesh may be completely different than the old 

mesh with regard to number of nodes, number of elements and element 

connectivity. User has to decide on the moment of rezoning and the new mesh.  

 

3. Transferring the Field Variables to the New Mesh 

The nodes in the new mesh are in a triangle or tetrahedron of the old mesh. The 

field variables of the new mesh are evaluated by using the triangular coordinates 

and linear interpolation. For the boundary nodes, however, the new node may be 

out of the triangle or tetrahedron due to curved boundaries. In this case, using the 

nearest triangle or tetrahedron, the field variables of the node is determined by 

linear extrapolation. The element variables are evaluated using the nodal values 

by either bi or tri-linear interpolation or by isoparametric interpolation. 

 

 Due to approximations involved in transferring the variables from old 

mesh to the new one, equilibrium may not be satisfied exactly after the first 

loading step after rezoning. Therefore, it may be useful to perform a zero or very 

small load step right after rezoning. 

 

4.7 Modeling Centrifugal Loads in Cornering Analysis 
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 In quasi-static tire models, the centrifugal force due to rotation may be 

implemented as a distributed load by supplying the mass densities of the tire 

materials, rotation speed (independent of the time increment of the analysis) and 

the position of the rotation axis. The distributed body force is evaluated by 

q ri i= ρω 2          (4.88) 

where ρ is the mass density per unit deformed volume, ω is the angular speed of 

the body and r is the current position vector of the material point, perpendicular 

to the rotation axis, starting from rotation axis and pointing the material point. 

The finite element software evaluates consistent nodal loads of the elements 

depending on their volumes. The angular velocity of the body, ω is defined by the 

analyst and can be implemented to a static analysis as well. 
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CHAPTER 5 

STATIC FINITE ELEMENT MODELING OF TIRE 

 

5.1 Introduction 

 

 A static analysis is performed before going into the more complex 

cornering analysis of the rolling tire. The goal of the static analysis is twofold. 

The material data for the rubber-textile and rubber-steel composites are not 

precisely known, therefore the static analysis is an indicator for the adequacy of 

the assumptions for the calculation of the material elastic properties. Next, static 

analysis will reveal some basic problems in finite element modeling of tires. 

Since static model is simpler than cornering model, it will be simpler to tackle 

with the problems detailed in the previous Chapter.  

 

 A number of trials are performed initially with homogeneous tires (which 

are not presented here since the material of real tire is a highly anisotropic 

composite whose behavior is far off from that of a homogeneous tire), before 

inflation and contact analysis are performed on a composite tire. These trials 

revealed the proper mesh size especially for the contact analysis. 

 

5.2 Tire Modeled 

 

 The tire model is based on geometry and construction of 155 R 13 78 S 

tire which is a typical small and medium sized automobile tire. The properties of 

the tire, taken from manufacturer's catalog are presented on Table 5.1. 
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Table 5.1 Properties of 155 R 13 78 S Tire 

Recommended Rims 4.50 Bx13 or 5.00 Bx13 

Inflated Section Width 157 mm 

Inflated Outer Diameter 578 mm 

Maximum Load per Tire 4220 N (430 kgf) 

Maximum Inflation Pressure 220 kPa (32 psi) 

 

5.3 Coarse Mesh Tire Model 

 

5.3.1 Mesh 

 

 For the first trial using ABAQUS, the mesh generated consists of 24 

elements per half sector. The sector mesh is shown in Figure 5.1. Since in static 

loading, the problem is symmetric -except tread ply which is skew-symmetric but 

this fact is ignored- only half of the tire sector is modeled with appropriate 

boundary conditions. 
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Figure 5.1 Profile of Coarse Finite Element Mesh Used 
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 In this mesh, elements 1 to 9 are sidewall elements with the property of 

one ply of textile fibers embedded into the rubber. Although there exists a bead 

bundle made of steel in element 1, this construction is ignored for the time being, 

assuming that it does not affect the static behavior of the tire significantly. Also 

the body ply being wrapped around the bead bundle and bead filler are ignored 

and this section is assumed to contain single ply. Elements 10 to 16 are tread ply 

elements. Body ply continues in them as the inner ply and there exists two more 

steel plies over the body ply. These two steel plies are not perpendicular to body 

ply but mostly have about +20 and -20 degree angle with the meridonial line. 

Each steel ply is 2 mm thick with four 0.25 mm diameter steel wires per 1.32 mm 

on the average. A schematic sketch of carcass construction is shown in Figure 

5.2. Elements 17 to 24 are the tread elements made of rubber only. For the time 

being the tread pattern is ignored and the tread surface is assumed to be smooth. 

The boundary conditions on the sector are as follows: 

 

 Rim is assumed to be rigid and the tire is assumed to be stuck on it so 

nodes 1, 2 and 3 are fixed in all three mutually perpendicular directions. 

 

 In static loading, tire sector is symmetric, therefore symmetry boundary 

condition in the horizontal direction, the horizontal motion being prevented is 

applied to nodes 41, 42 and 43. 

 

 The tire is inflated to 180 kPa air pressure which is the rated pressure of 

this specific tire, also 165 kPa and 200 kPa are applied as well, which are 10 % 

less and 10 % more than the rated inflation pressure respectively. Pressure is 

applied to the appropriate nodes which lie on the inner surface of the tire as 

“element uniform pressure” boundary condition. In large deformation analysis, 

the pressure always remains perpendicular to the deformed element surface. A 

detailed treatment of pressure boundary condition including large displacements 

is in Chapter 4. 
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Figure 5.2 Carcass Construction of Steel Belted Radial Tire 

 
 Since the aim is not to perform inflation analysis but also the ground 

contact analysis of the tire, this axisymmetric model is not sufficient. The model 

has to be sweeped through 180 degrees. For the first 30 degrees, since contact is 

expected in this zone, 2 degrees increment is used for a finer mesh and in the 

remaining 150 degrees, 10 degrees increment is applied. The model thus obtained 

is shown in Figure 5.3. Since the model is symmetric, the mobility of end nodes 

in horizontal direction is restricted. 

 

 The textile fibers are modeled as linear elastic material in tension and not 

carrying compression loads by the command *NO COMPRESSION, steel fibers 

are modeled as linear elastic material, rubber is approximated by linear elastic 

model since the carcass prevents large strains, although Mooney-Rivlin material 

model may be introduced to increase the accuracy of the model. The material 

properties used are presented in Table 5.2. 

 

5.3.2 Inflation Analysis 

 

 The first step in the static analysis of the tire is inflation. The rated 

pressure of the tire is 180 kPa. The deformations occurring on the computer 
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model are consistent with the deformations observed on similar type of physical 

tires. 

 

 
Figure 5.3 Coarse Mesh of Static Tire Model 

 

Table 5.2 Material Properties 

Tread Sidewall Textile Belts (Only in Tension) Steel Belts (±20°)

E ν E ν E ν
Distance 
between 
Fibers

Area per
Fiber E ν

Distance 
between 
Fibers

Area per
Fiber

14 MPa 0.45 5.5 MPa 0.45 3.4 GPa 0.3 1.05 mm 0.126 mm2 200 GPa 0.3 0.33 mm 0.126 mm2

 

5.3.3 Ground Contact Analysis 

 

 The last step in static tire modeling is ground contact analysis. The 

inflated tire is pressed to a flat rigid surface having Coulomb friction, with 

coefficient of friction being 0.8. In ground contact analysis there exists two 

approaches in determining the boundary condition for ground contact; the 

displacement of the hub may be specified, or, the tire vertical load may be 
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specified. In ground contact analysis, the two very significant outputs for testing 

the model are, the pressure distribution in between tire and ground interface, and 

the vertical stiffness of the tire. The load-deflection characteristics of 155R13 

steel belted radial is presented in Figure 5.4. 
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Figure 5.4 Load-Deflection Characteristics of 155 R 13 Tire with 

Modified Material Elastic Constants 
 

 If tread carcass ply is taken to be ±10°, the vertical stiffness of the tire 

increases and carcass stiffness dominates over inflation pressure which decreases 

the dependency of vertical stiffness to inflation pressure as expected. Figure 5.5 

presents the same tire with ±10° tread ply . 

 

 In case of textile belted radial tires, mostly there exists four plies of textile 

tread carcass instead of two plies of steel. The spacing of textile fibers is 1 per 

mm, with a fiber diameter of 0.5 mm. The ply angle is again ±20°. Textile tread 

plies do not carry compression. Load deflection characteristics of this 

construction is presented in Figure 5.6 for different inflation pressures. 
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Figure 5.5 Load-Deflection Characteristics of 155 R 13 Tire  

with ±10° Tread Carcass 
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Figure 5.6 Load Deflection Characteristics of Textile Belted Radial Tire 

 

 Although 155 R 13 is a radial tire, if it were cross ply, with ±35 ° textile 

fibers, the load-deflection characteristics would be as shown in Figure 5.7. The 

cross ply tires are known to be structurally stiffer than radial tires thus they 

require lower inflation pressures than radial ones to maintain the same vertical 

load (Davis, 1997). The finite element model not being capable of modeling the 

rather pronounced pantographic action (interply friction) of ±35 plies results 

unrealistic soft cross ply tire model. 
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The load deflection characteristics of ±20° and ±10° steel, ±20° textile 

belted radial tires, is compared with that of cross ply tire in Figure 5.8 for the 

rated inflation pressure 180 kPa. 
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Figure 5.7 Load Deflection Characteristics of Cross Ply Tire 
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Figure 5.8 Comparison of Load Deflection Characteristics of  Steel and 

Textile Belted Radial and Cross Ply Tires 
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 The quarter-contact patch pressure distribution of the above analyzed four 

types of tires are presented in Figure 5.9. Vertical tire load is 2200 N, inflation 

pressure is 180 kPa. The contact patch pressure distribution being higher close to 

sidewalls and lower at the center of the contact patch resembles the pressure 

distribution obtained experimentally for a similar radial tire as shown in Figure 

5.10. 

 

  
±20° Steel Radial ±10° Steel Radial 

   
±20° Textile Radial ±35° Cross Ply 

Figure 5.9 Contact Patch Pressure Distribution of Different Tire Constructions 

 

5.3.4 Effect of Tire Tread to Contact Patch 

 

 The tire model presented so far has one major property missing, which is 

the tread pattern. Since the mesh is not fine enough to model the all tread 

geometry, only the circumferential grooves of the tread is modeled by removing 

the tread elements 21 and 24 (Figure 5.1) only in the contact patch zone. The 

model thus obtained may be thought of a rough model for modern tread 

geometry. The load deflection characteristics of such treaded, one textile body 

ply two steel tread plies 155R13 tire is presented in Figure 5.11 while a 
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comparison of smooth and treaded version of the same tire at rated inflation 

pressure is presented in Figure 5.12. 

 

 

Figure 5.10 Contact Pressure Distribution of a 195/70R14 Tire in Static Case and 
in Low Speed Rolling (75 mm/s) by Pottinger (1992) Experimentally 
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Figure 5.11 Load Deflection Characteristics of Treaded 155 R 13 Tire 
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Figure 5.12 Comparison of Smooth and Treaded Tire Models with 

Experimental Data at 180 kPa Inflation Pressure 
 

5.4 Fine Mesh Tire Model 

 
5.4.1 Mesh 

 

 In the first mesh used, although computer time required to solve the 

model was not too high, it was evident that the mesh was coarse. In the contact 

region, a node entering into contact or separating caused severe changes in the 

results especially when only few nodes are in contact with the rigid surface. 

Furthermore, due to commonly known property of finite element analysis, having 

a finer mesh mostly improves the solution. Due to the stated two facts, a finer 

mesh with 41 elements per sector is formed, knowing that both the solution time 

and the computer resources needed to obtain the solution will be increased 

compared to that of coarse mesh. The tire sector with fine mesh is shown in 

Figure 5.13. 

 

 Elements 1 to 15 contain the body ply, elements 16 to 27 contain both 

body ply and tread ply and elements 28 to 41 are tread elements for a radial tire.  
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Figure 5.13 Profile of Fine Finite Element Mesh Used 

 

 In this mesh, the boundary conditions are as follows: Nodes 1, 2 and 3 

fixed, modeling the rim, mobility of nodes 41, 42 and 43 is restricted in 

horizontal direction. Uniform pressure is applied to the inner surface to model the 

inflation. 

 

 For the region where one may expect contact, this profile is copied in 

angular direction with 1 degree increment 30 times, then in the remaining 150 

degrees, a 5 degrees increment is applied. The tire model having 2460 8-noded 

brick solid elements and 4331 nodes belonging to those elements is presented in 

Figure 5.14. 

 

 The material elastic properties used for a steel belted radial tire is the 

same as in Table 5.3 and carcass construction is same as shown in Figure 5.2. 
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Figure 5.14 Finer Finite Element Mesh of Static Tire Model 

 

5.4.2 Inflation Analysis 

 

 Inflation is the first step of the analysis. The tire is inflated to one of 165 

kPa, 180 kPa 200 kPa which are 10 % less than rated pressure, rated pressure and 

10 % more than rated pressure respectively. The deformations occurring on the 

computer model are consistent with the deformations observed on similar type of 

physical tires. 

 

5.4.3 Ground Contact Analysis 

 

 The last step of static tire analysis is ground contact. The inflated tire is 

pressed to a rigid surface by a predefined displacement and ground reaction force 
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is measured. For 155 R 13 78 S tire with steel tread plies, the force displacement 

characteristics is presented in Figure 5.15 for three different inflation pressures. 

The force-displacement characteristics is similar to the one presented in Figure 

5.4 except the finer mesh being slightly softer than the coarse mesh. 
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Figure 5.15 Load-Deflection Characteristics of 155 R 13  

Tire with Finer Mesh 
 

5.4.4 Effect of Tire Tread to Contact Patch 

 

 For the fine mesh, the tread geometry introduced may be improved 

compared to the coarse mesh. In addition to circumferential grooves, some 

staggered grooves connecting the circumferential grooves may be introduced by 

removing some more tread elements as in Figure 5.16. The load-deflection 

characteristics of such 155R13 tire is presented in Figure 5.17 while the 

comparison of smooth and treaded models of coarse and fine meshes with 

experimental data is presented in Figure 5.18. 
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Figure 5.16 Simplified Tread Pattern Geometry Introduced to Contact Patch 
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Figure 5.17 Load Deflection Characteristics of Treaded 155R13 Tire 
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Figure 5.18 Comparison of Load Deflection Characteristics of Smooth  

and Treaded 155R13 with Experimental Data 
 

5.5 Attempts for More Precise Models 

 

 The tire models presented so far have two major simplifications. The use 

of a  linear elastic material model for the rubber, the main constituent of tire is the 

first major simplification. The second simplification is the use of the Poisson’s 

ratio for rubber as 0.45, due to numerical solution scheme used, although most 

tire rubbers are nearly incompressible with Poisson’s ratio being 0.49. With the 

increased computational power, Mooney-Rivlin material model, mostly preferred 

for polymers and incompressible formulation are introduced. The new models 

have refined mesh for more precise results. Quadratic elements are used in new 

models, instead of linear ones, which have second order interpolation functions.  

 

5.5.1 Axisymmetric Inflation and Rim Seating Models 

 

 The axisymmetric tire model shown in Figure 5.19 consists of 198 8 node 

axisymmetric, incompressible (Herrmann formulation) elements modeling the 

rubber matrix. The material properties of various parts of the tire are presented in 



 127

Table 5.3 and the material identification of elements in Figure 5.20. The 

reinforcement of the tire are represented by 8 node rebar elements specially 

constructed for unidirectional reinforcing bars. The rebar elements have the same 

connectivity as the matrix element but has different material properties. The 

material properties of reinforcements are presented in Table 5.4, the distribution 

and ply angles are presented in Table 5.2, and the locations of these materials in 

mesh are shown in Figure 5.21. 

 

Table 5.3 Mooney-Rivlin Material Constants of Rubber 

Rubber Material C10 C01 
Bead Filler 14.14 MPa 21.26 MPa 
Sidewall 171.8 kPa 830.3 kPa 
Undertread 140.4 kPa 427 kPa 
Tread 806.1 kPa 1.805 MPa 

 

 
Figure 5.19 Axisymmetric Tire Model 
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Figure 5.20 Location of Rubber Material in Tire 

 

Table 5.4 Elastic Properties of Reinforcing Materials 

Carcass Material Modulus in Tension Modulus in Compression 

Textile Body Ply 3.97 GPa 198.5 MPa 

Steel Breaker Plies 200 GPa 100 GPa 

 

Table 5.5 Geometric Properties of Reinforcing Materials 

Reinforcement Type Ply Angle 
[°]

Cord Diameter 
[mm]

Ends per 
decimeter

Equivalent 
Thickness [mm] 

Bead Bundle 0 1 Not applicable Not applicable 

Body Ply  90 0.68 79 0.120 

Breaker (Steel) ±20 0.25 330 0.162 

Breaker (Textile) ±20 1.0 112 0.878 

Breaker (Zero) 0 0.68 100 0.363 
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Figure 5.21 Location of Reinforcing Materials 

 
 The stresses due to inflation on different rims are analyzed. First, a 

155R13 with one textile body ply and two steel tread plies is mounted on 4, 4.5, 5 

and 5.5 inch rims where 4.5 and 5 are the recommended rims by the manufacturer 

while 4 and 5.5 inches are permitted as well. The stress distribution as well as tire 

profile are presented in Figure 5.22. 

 

 The same tire with 0° textile breaker ply added is mounted on 4.5 and 5 

inch rims. The 0° ply reduces the stresses on breaker plies. The stress distribution 

and deformed shapes are presented in Figure 5.23. 

 

 Next, tire with 4 ply textile tread carcass is examined. The tire is mounted 

on 4.5 and 5 inch rims and inflated to rated pressure. Due to softened breaker 

plies, the stresses are reduced and deformations are increased. The stress 

distribution in the tire and deformed shapes of the tire are presented in Figure 

5.24. 
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Figure 5.22 155R13 Tire Mounted on 4, 4.5, 5 and 5.5 inch Rims

 

 

 
Figure 5.23 155R13 with 0° Textile Breaker Ply Added on 4.5 and 5 inch Rims
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Figure 5.24 155R13 with 4 Textile Breaker Plies on 4.5 and 5 inch Rims 

 

5.5.2 Ground Contact Model 

 

 In the first static model attempts, 8 noded brick elements were used which 

had trilinear interpolation functions. With increasing computational power, 20 

noded brick elements were introduced. These elements have triquadratic 

interpolation functions which allows precise representation of strain fields. The 

incompressible elements using Herrmann formulation are introduced with 

Mooney-Rivlin (two coefficient) material model, which is specifically devised 

for polymers. 

 

 The tire mesh at the tire sector is similar to the axisymmetric model 

(Figure 5.19) but the skew-symmetry of breaker plies are ignored and symmetry 

boundary condition is applied to the symmetry plane. The rim contact is 

simplified by fixed boundary conditions therefore the finer mesh around rim 

contact zone is unnecessary and bead bundle is ignored.  The resulting tire sector 

and quarter tire model are presented in Figure 5.25 and 5.26 respectively. The 

material properties and distribution are same as in Tables 5.3 and 5.4 and in 

Figures 5.22 and 5.23 respectively. 
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Figure 5.25 Tire Sector for Ground Contact Analysis 

 

 
Figure 5.26 Quarter Tire Model for Ground Contact Analysis 

 

 The tire model presented in Figure 5.26 consists of 7922 nodes and 2448 

elements. Since all tests -static or dynamic- are performed on the tire testing 

setup more precise than ever, the new tire model is pressed on a cylinder having 

the radius equal to that of the test machine drum. Due to refined mesh, simplified 

tread pattern of the tire can be modeled in a more realistic manner as shown in 

Figure 5.27. Figure 5.28 shows the force-deflection characteristics of the treaded 
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and smooth tire models compared with the experimental tire with 3 mm tread 

depth. 

 

 
Figure 5.27 Simplified Tread Pattern 
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Figure 5.28 Force-Deflection Characteristics on the Drum of the Test Machine 

5. 6. Conclusions about Static Tire Models 
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 The results of static finite element tire models are in good agreement with 

the results from the experimental study and by other researchers. This can be 

accepted as a verification of the elastic material properties, carcass modeling, and 

mesh used in the model study. Furthermore, pressure distribution at the contact 

patch closely resembles the contact patch pressure distributions found in 

literature. These verifications form the basis for entering the next stage of the 

study, namely the modeling and analysis of cornering tire. 
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CHAPTER 6 

MODELING THE CORNERING BEHAVIOR OF TIRE 

 

6.1 Introduction 

 

 The goal of this study is to obtain the cornering force characteristics of 

the tire without any experimental data about the tire itself, if possible. To achieve 

this, starting with simplest computer model, neglecting inertia and viscoelastic 

effects, a model similar to the one used in static tire model will be used. Due to 

rolling and nonzero slip angle (diagonal motion), the symmetry assumption in 

static model is lost even in the simplest model.  

 

 After tuning the quasistatic model up, the enhancements like dynamic 

effects and viscoelasticity, may be introduced to the model. The amount of details 

introduced increases the precision of the model in the expense of computational 

time. 

 

6.2 Remeshing Using MARC’s Rezoning Capability 
 

 MARC can redefine the mesh on a deformed geometry as explained in 

Section 4.6. This leads to the idea of having fine mesh around the contact patch 

and coarse mesh elsewhere. As the tire rotates, the fine mesh zone would start 

moving away the contact patch and coarse mesh zone would come closer. Before 

coarse mesh enters to the zone where stress and strain gradients are high due to 

contact, using rezoning, the fine mesh zone would be moved such that the regions 

moving away from the contact zone would have coarse mesh and the regions 
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approaching to contact zone would have fine mesh. This approach would reduce 

the number of nodes and elements considerably without reducing the solution 

accuracy noticeably. However, as explained in Section 4.6, in order to use 

rezoning, the finite element software defines continuous field variables in the 

solution domain. For better approximation of discrete field variables in the 

continuous domain, any type of discontinuity must be avoided in the solution 

domain. MARC (1984b) strongly recommends using different spatial positions at 

the points of discontinuity, and use of proper tying, so that the structure works 

together. This is necessary because averaging of field variables are done 

spatially. In this case, with ultimate simplifications, 155R13 tire can be modeled 

as in three parts, rubber matrix, textile body ply, and steel tread plies occupying 

different spatial locations as shown in Figure 6.1. Each node on the body or tread 

ply, is connected to its rubber counterpart by tyings. This model contains many 

tyings which are created by a special program. However, number of tyings being 

so large increases the solution time beyond a fine mesh model. Further, each 

rezoning requires repositioning of nodes and regenerating the large number of 

tyings again. In this case, rezoning is not an alternative to complete fine meshing 

the contact trajectory. Therefore, in this study rezoning capability of MARC is 

not used except for some trials to check its applicability to the problem. 

 

 
Figure 6.1 Tire Model for Rezoning 
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6.3 Quasi-Static Cornering Tire Model 

 

6.3.1 Coarse Mesh Cornering Model on Flat Surface 

 

 The coarse mesh static tire model with 24 elements in a sector, 

constructed by using ABAQUS, is taken to be the base of this cornering model. 

The material data is same as the static model and no mass or damping data is 

supplied since rolling speed is assumed to be low. The mirror image of the sector 

is taken first, then the full sector is copied 52 times to obtain the full tire model. 

The outer surface of the tread is meshed by 5 noded contact elements of 

ABAQUS. It is a known fact that the cornering force reaches to its steady-state 

value after some distance has been rolled (Loeb et al., 1990). To achieve rolling, 

a rim which can rotate around the tire axle is defined using rigid elements of 

ABAQUS. 180 kPa inflation pressure is applied to the inner surface of the tire as 

the first step of the analysis. In the second step tire is pressed to rigid ground by a 

predefined displacement which corresponds to 2 kN vertical load approximately. 

As the third step, the tire is rolled on the rigid ground by a known slip angle 

which is 2 degrees, by moving the rigid ground. The cornering force increases as 

the tire rolls and attains a steady state value of 1015 N after the tire makes half a 

rotation. On an HP 715/50 workstation, it took 26 days (real time) for the model 

to reach steady state. The variation of cornering force versus distance rolled is 

plotted is illustrated in Figure 6.2. 
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Figure 6.2 Variation of Cornering Force with Distance Rolled at 2° Slip Angle 

(180 kPa Inflation Pressure, 2kN Vertical Load) 

 

6.3.2 Coarse Mesh Quasistatic Cornering Model on Test Machine’s Drum 

 

 For the first trials, the tire model rolling and cornering on the test 

machine’s drum has 42 rubber matrix elements, 28 textile body ply rebar 

elements and 12 steel tread ply elements as illustrated in Figure 6.3. The 

complete rendered tire model on the drum, is shown in Figure 6.4. and the full 

tire mesh with rim is shown in Figure 6.5. In the contact trajectory, the nodes are 

placed with 5 degrees increment. At the end of contact trajectory, there exist the 

transition regions where nodes have 7.5 degrees spacing and rest of the tire, 

which does not contact to the drum is meshed with 15 degrees spacing. This 

models consists of 4430 elements and 3800 nodes. 
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Figure 6.3 Tire Model Sector on the Drum 

 

 
Figure 6.4 Rendered Picture of Tire Model on Drum 



 140

 
Figure 6.5 Tire Mesh 

 

This model which is a duplicate of physical situation did not yield a 

usable result. As mentioned in Section 4.2.2, pressure must be normal to the 

deformed surface and the equivalent nodal forces must be updated if there exists 

a change in the surface area which is exposed to pressure. In ABAQUS this 

updating was done quite accurately therefore rolling the tire itself did not cause 

any trouble. However in MARC, as the tire rotates it was experiencing expansion 

and warping even if no ground contact exists. After a careful examination with 

simple pressurized models, it was understood that pressure, combined with steady 

motion, causes the problem. Since this problem cannot be avoided with any of the 

available options of follower force in MARC, the only remedy would be to keep 

the tire fixed and move the drum around the tire to simulate the same situation. 

This is conceptually a simple kinematic inversion process as shown in Figure 6.6. 

However MARC has some limitations which makes this simple inversion a rather 
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tough job. The same limitations introduce some more approximations too. In 

MARC, a rigid body must have predefined velocity, position change or force, but 

cannot make a free motion (displacement or rotation) depending on the constaints 

applied on it. In this case, the drum, which must have a free rotation, has to be 

formed using deformable elements. In MARC, a rigid body is an analytical entity 

whose surface normal is evaluated exactly at each point. This enables more 

precise calculation of contact and frictional forces. This is not available for 

deformable bodies which are discrete. The drum being deformable brings 

additional computational effort as well, which will not be used as a result too. 

 

 
Figure 6.6 Kinematic Inversion to Keep Tire Completely Fixed  

and Drum Rotating around the Tire 

 

 The loci of the two nodes at the rotation center of the drum are evaluated 

by using the configuration shown in Figure 6.7. 
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Figure 6.7 Loci of Two Nodes Defining the Drum Center 

 

 The position of nodes just before rolling starts is 
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where front stands for the node whose x coordinate is negative (positive x-axis 

points into the page in Figure 6.6) and back stands for the node whose x 

coordinate is positive. ρ is the distance between the drum center and tire center 

after the vertical load is applied, w is the width of the drum, α is the slip angle. 

At any time t, the position of the nodes will be 
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where θ = ωt, ω being the angular speed of the tire and t is the time elapsed since 

cornering has started. The displacement boundary conditions to be applied to the 

two nodes of the drum axle during the cornering load step of the analysis is 

therefore 
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The sine and cosine functions are implemented to the model by tables and 

formula options of Mentat 3.2. For Mentat to evaluate the values exactly at each 

time increment, fixed time step size is used and the number of divisions on the 

tables are made equal to number of time steps. 

 

 This model with different vertical loads and slip angles simulates the test 

conditions done on the tire testing setup. Figure 6.8 shows the deformations on 

the tire model when it is cornering with a slip angle of 2 degrees and having a 

vertical load of 2kN. There is visible deformation on tread due to cornering, 

which is observed during tire tests as well (Figure 7.1). The cornering forces 

obtained at various slip angle and vertical load combinations are plotted on the 

cornering characteristics of the experimental data in Figure 6.9. The computer 
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model results shown with a circle have no centrifugal force while the one shown 

with a diamond has centrifugal force corresponding to 60 km/h road speed. 

 

 
Figure 6.8 Deformations on a Medium Loaded (2kN) Lightly Cornering (2°) 

155R13 Tire obtained from Computer Model 
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Figure 6.9 Cornering Force Characteristics of 155R13 Obtained from 

Computer Model, Lines Show Experimental Results (10km/h, 180 kPa) 
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6.4 Conclusions about Quasi-Static Cornering Tire Models 
 

 The cornering force characteristics obtained around 2 kN vertical load 

shows good agreement with experimental results. However at lower slip angles 

the cornering force estimated by the computer model is less than the one 

determined experimentally while for higher slip angles it is higher. This slight 

discrepancy may be due to one of the reasons stated below or a combination. 

 

 • Friction Model and Coefficient of Friction: In models presented, mostly 

regularized Coulomb friction model is used which permits small sliding. For 

some trials, stick-slip friction model is used to see the difference but although 

there is considerable increase in solution time, the change in tire behavior is 

minor. Coefficient of friction of rubber on smooth steel test drum is estimated by 

an impending motion test which gives an idea about static coefficient of friction. 

Any inconsistency in friction model or coefficient of friction will have an impact 

on computer model results. 

 

 • Tire Material Properties: Each rubber, depending on the proportions of 

constituents and treatment, has different elastic properties. In this research, elastic 

properties of rubber are obtained from different references and manufacturers as 

typical values. The same uncertainty goes with the reinforcement elastic 

properties which may cause computer models behave different than physical tire. 

 

 • Reinforcement Model: Textile and steel reinforcement in tire are 

modeled by unidirectional reinforcing models. These models neglect bending 

which may be important in case of steel cords and they neglect the coupled 

behavior of twisted textile fibers. Reinforcement models neglect interply effects 

which may be rather pronounced in some cases. 
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 • History and Temperature Dependent Material Behavior of Rubber: 

Rubber has pronounced history and temperature dependent elastic properties. In 

tire tests, tire is “conditioned” before the data is collected which brings the tire to 

a steady state temperature and deformation history. This rather complicated 

behavior is not modeled as well as different temperature states at different steady-

state cornering conditions. 

 

 Since the problem is nonlinear, the effect of each individual effect has to 

be investigated and only the significant ones must be included in the more 

detailed models. 
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CHAPTER 7 

CONCLUSION AND RECOMMENDATIONS FOR FURTHER STUDIES 

 

7.1 Introduction 

 

 In this work, cornering force characteristics of automobile tires are 

obtained using finite element computer models and the results obtained are 

verified experimentally by the tire testing setup constructed. Tire models start 

with static ones to gain insight about tire materials and behavior and extended to 

quasi-static rolling models some of which are enhanced with centrifugal load due 

to rolling. 

 

7.2 Conclusions about Present Work 
 

7.2.1 Tire Testing Setup 
 

 The external drum tire testing setup constructed can perform cornering 

and rolling resistance tests on most of the automobile tires. When compared with 

other external drum tire testing machines, according to the drum size and driving 

motor power it is a rather small machine. According to the maximum road speed, 

maximum tire load and maximum slip angle attainable, the test machine is in a 

rather good place among others.  

 

 The test machine besides supplying the cornering force characteristics, 

supplies insight about the deformations on a cornering tire as shown in Figure 

7.1. 
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Figure 7.1 Deformed Photograph of 155R13 Tire 

at 8° Slip Angle and 3500 N Load 

 

7.2.2 Static Tire Models 
 

 Static tire models supply a good insight to elastic behavior of pneumatic 

tires. The effects of reinforcement and the way it is modeled to obtain the same 
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deformations when a real tire is inflated and pressed on a rigid surface are 

examined by the static models. Using static models, the effect of material 

properties and microbuckling in reinforcement are tuned. The effect of different 

meshes on model results are examined. Different carcass constructions on 

different rims are rim seated and inflated using axisymmetric models. 

 

7.2.3 Cornering Tire Models 
 

 Quasi-static models, although have simplifications, modeled the cornering 

behavior of pneumatic tires rather precisely. With minor improvements, these 

models may be used to estimate the cornering behavior of tires in design stage, 

reducing the need for prototyping and experiments. The same models may be 

used to understand the cornering phenomena in more detail as well. 

 

7.3 Recommendations for Further Studies 

 

7.3.1 Recommendations for Increased Model Accuracy 

 

 As in most modeling processes of a physical phenomena, in tire models, 

there are three main parts. The data input to the model, the governing equations 

and theory used, and the simplifications and/or assumptions to make the model 

manageable and/or to approximate a phenomena which is not known in great 

detail. For tire models, data input are, geometric properties of the tire, which 

include tire dimensions, reinforcement properties (ends per decimeter, location 

and ply angle, yarns per meter for textile), material properties of various 

components including at least three rather different types of rubber (some authors 

use up to 8 different rubber types like Helnwein, et al., 1993 for precise modeling 

purposes) and reinforcement. Determination of frictional properties of rubber 

with contacting surfaces would improve model accuracy. As for the governing 

equations, the linear elastic material response and Mooney-Rivlin material 
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models may be compared using a sensitivity analysis. In modeling the 

reinforcement, rebar elements are the most precise ones available for tire 

composites. Rebar elements have some simplifications. They share the same 

nodes with the matrix element which imposes exactly the same displacements on 

rebar as the matrix element. This condition is quite similar to perfect bonding 

between reinforcement and matrix material. This assumption may be obeyed by 

textile reinforcements quite accurately. However especially in used tires, the steel 

reinforcements loosen the rubber surrounding them and can move with respect to 

rubber which is ignored in models. Another simplification in rebar concept is, 

being unidirectional, rebar elements carry only tension or compression and only 

in the direction of reinforcement. They have no other stiffnesses whereas bending 

stiffness of steel reinforcement may be significant when compared to that of 

rubber, and in such a case it must be considered as well. In case of textile 

reinforcement, due to twist, a coupled physical behavior is indicated in literature 

(Padovan, 1998) which is ignored by the present rebar elements. Effect of 

temperature change (in the operating temperature range) on material properties of 

rubber as well as on thermal strains should be investigated. However, in order to 

go beyond the present point in geometric and material properties, it is inevitable 

to cooperate with a tire company to obtain detailed geometric data about the tire, 

specimens of various rubber components for different experimental purposes and 

the experience of the company. 

 

 For finite element analysis, another approximation is introduced by 

discretization. The first improvement would be refining the mesh especially at the 

contact trajectory. While refining the mesh, the number of elements and nodes 

must be increased but not the order of the interpolation functions of the elements. 

Higher order elements do not yield precise results in contact analysis as the linear 

ones does (ABAQUS, 1994b, MARC, 1994a, 1997b). Finer mesh requires 

increased computer time and storage resources in return. With finer mesh, the 
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geometric details of the tire like tread pattern may be modeled with greater 

accuracy too. 

 

7.3.2 Recommendations for Increased Computational Efficiency 

 

 When the details of tread pattern is ignored, tire has a rather simple 

axisymmetric geometry. Inflation and rim seating processes, when analyzed by 

an axisymmetric model, do not contain oversimplifications. After completing the 

inflation and rim seating in an axisymmetric model, transferring this state to a 

three-dimensional model for further non-axisymmetric loading would reduce the 

computer time considerably for inflation analysis whereas rim seating would be 

modeled as well. Another great improvement would be using Arbitrary Eulerian-

Lagrangian formulation in rolling tire analysis. The tire rotation is formulated in 

an Eulerian sense, where the mesh remains fixed in space and as the tire rolls, 

material flows through the mesh. This keeps the contact patch at a fixed mesh 

location on the tire where the fine mesh exists and other parts of the tire can be 

meshed by a relatively coarser mesh. On the other hand, tire deformations are 

modeled in Lagrangian sense which ensures that the mesh deforms with tire 

material and no part of the mesh contains a void or material flows out of mesh. 

ABAQUS (1998) is about to include a special type of arbitrary Eulerian-

Lagrangian formulation for axisymmetric structures like tires. 

 

7.3.3 Improvements on Tire Testing Setup 

 

 The tire testing setup is constructed with a limited fund, therefore one of 

the most important design criteria was cheapness which lead simplicity. This 

simplicity requirement limited the variety of test conditions in some cases and 

caused problems in other cases. 
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At higher test speeds, if the slip angle and/or vertical load on the tire are 

high, the tire heats up to the temperatures where tread pattern is damaged. 

Heating is not so severe in real operating conditions because tire cools down due 

to the wind at high speeds. A similar condition may be simulated using a blower. 

In this case, both high speed high slip angle and/or high vertical tire load tests 

may be performed. The results obtained would be more realistic since tire would 

be at a temperature state closer to the real working conditions. 

 

Tire testing setup can perform steady-state cornering experiments at a 

fixed slip angle. With minor modifications, the slip angle may be varied during 

tests. In such a case, the driving motor grounding must be isolated from that of 

the force plate to avoid electrical noise effecting the signals and the need for 

averaging the data, to filter out the noise in signal would be reduced. 

 

Without any modifications, the tire testing setup may be used for tire 

rolling resistance experiments, which may be some part of a wider area research 

on tire rolling resistance. 
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APPENDIX A 

REBAR SUBROUTINES IN MARC 

 

A.1 Introduction 

 

 The reinforcement characteristics of a tire play an important role in the 

dynamic response and performance of a tire. Reinforcement found in most radial 

automobile tires, including the tire modeled is shown in Figure A.1. The results 

obtained from finite element tire models therefore, heavily depend on the 

precision in modeling the reinforcement of the tire. Special reinforcing bar 

(rebar) elements, which is the most precise way available to model the 

unidirectional reinforcements, are used. Finite element software MARC needs the 

three direction cosines of the reinforcing fibers, thickness of the rebar element, 

relative position of reinforcing layer in the element and equivalent thickness of 

the reinforcing layer for every integration point belonging to a rebar element. 

Besides these, number of reinforcing layers in the element, material properties of 

the reinforcing layer, surface to which the layers are similar to (this is required 

only in version K7 and higher, for K6 versions, layers can only be similar to 1-2 

side or 1-2-3-4 face) must be defined. The undeformed (initial) configuration of 

the tire is axisymmetric if the tread pattern is ignored, therefore using a global 

coordinate system, the three direction cosines of the reinforcing bars may be 

defined easily. When it comes to deformations, which cannot assumed to be 

infinitesimal, the reinforcing layers must be deformed with the rubber matrix and 

direction cosines of the reinforcing elements must be updated accordingly. The 

following subroutines are devised to update the directions of reinforcements for 
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large deformations. Since the strains in the rather stiff reinforcing fibers are 

small, the change in their cross-sectional area are neglected. In case of compliant 

reinforcements, this may be included in the rebar subroutines as well. 

 

 
Figure A.1 Radial Tire Reinforcement 

 

A.2 General Structure of REBAR Subroutine and BelongToSet Function 
 

A.2.1 REBAR Subrotine for MARC Versions K6.x Family 
 

The general structure of the rebar subroutine is 
SUBROUTINE REBAR (N, NN, T, PR, TR, A) 
IMPLICIT REAL *8 (A-H, O-Z) 
DIMENSION A(3) 
 
 user coding 
 
RETURN 
END 

where 
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N  : element number (defined by the program) 

NN  : integration point number (defined by the program) 

T  : element thickness 

PR  : relative position of rebar layer in the element 

TR  : equivalent thickness of the rebar layer 

A  : direction cosines of the rebar fibers 

 

Since the vector A is internally normalized by the program, it may be any 

tangent vector to the fibers. 

 

A.2.2 REBAR Subrotine for MARC Versions K7.x Family 
 

The general structure of rebar subroutine is 
SUBROUTINE REBAR (N, NN, T, PR, TR, A) 
IMPLICIT REAL *8 (A-H, O-Z) 
DIMENSION A(3), NN(3) 
 
 user coding 
 
RETURN 
END 
 

where all the parameters are the same as versions K6.x except 

NN(1)  : integration point number 

NN(2)  : rebar layer number 

NN(3)  : integration point number in this layer. 

 

A.2.3 BelongToSet Function 
 

 BelongToSet is a logical function which determines the set name to which 

an element, node, integration point, layer, degree-of-freedom or increment 

belongs to. The first variable in BelongToSet determines the type of the target 

quantity, the second parameter is the number of the target quantity (element 

number, node number etc.) and the third parameter is the set name to be checked 

if the target belongs or not. If target quantity is an element of the set, 

BelongToSet logical variable returns .TRUE., if not it returns .FALSE.. 
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BelongToSet function is very useful in identifying the similar quantities in a set 

indexed with the set name. 

 

 The following is the list of BelongToSet function 

 
        logical function belongToSet (typeTarget, numTarget, setTarget) 
        implicit real*8 (a-h,o-z)          
c       external: 
        integer         typeTarget           ! must be an ipttyp (see below) 
        integer         numTarget            ! element number or node number, etc. 
                                             ! AFTER RENUMBERING!!!!!! 
        character*(*)   setTarget            ! Setname (LOWER CASE!!!) 
        
c      internal: 
        character*1     name 
        character*12    setName 
        dimension       iiname(12) 
 
c      common blocks: 
        include '/academic/marck62/common/dimen' 
        include '/academic/marck62/common/setnam' 
        include '/academic/marck62/common/space' 
 
c In the common block /setnam/, the following variables are defined: 
c       ndset:   number of defined Sets 
c       nsetmx: maximum number of Sets corresponding parametercard SETNAME 
c       (default: nsetmx =10) 
c       iptnam: pointer to the Setname. Each Setname takes 12 
c               characters and will be stored in integer format. 
c       ipttyp: pointer to the set type: 
c               ipttyp  Set type 
c                 0     Elements 
c                 1     Nodes 
c                 2     Integration points 
c                 3     Layers 
c                 4     Degrees-of-freedom 
c                 5     Increments 
c       iptnum: pointer to the number of elements in set 
c       iptloc: pointer to the stored elements in set 
c       iptbeg: pointer to all stored elements 
 
c     loop over all sets 
      do iset = 1, ndset                
 
        istype = ints (ipttyp + (iset-1)) 
 
        if ( istype.eq.typeTarget ) then 
 
         isname = (iptnam +(iset-1)*12) 
         do j=1,12 
           iiname(j) = ints(isname+j-1) 
           write(name,'(A1)') iiname(j) 
           setName(j:j) = name 
           if (name .ne. ' ') then 
             isnamlen = j 
            end if 
          end do 
                     
          if (setName (1:isnamlen) .eq. setTarget) then 
 
           isnumb = ints (iptnum+iset-1)  
            
           ieptr   = iptbeg + ints (iptloc+iset-1)-1 
 
           do i=1, isnumb 
             iexx = ints(ieptr+i-1) 
             if (numTarget .eq. iexx) then 
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               belongToSet = .True. 
               return 
             end if 
            end do 
           belongToSet = .False. 
           return 
          endif 
 
         end if 
 
        end do 
 
        write(*,*) 'belongToSet: set *',setTarget,'* not found' 
        belongToSet = .FALSE. 
 
        return 
        end       

 

A.2.4 Determination of Current Positions of Nodes 
 

 Determination of the current (deformed) position of the nodes is essential 

to assign the correct current direction cosines of the reinforcing bars. MARC 

keeps initial (undeformed) coordinates of the nodes and it evaluates the 

displacements of the nodes at the end of each increment. The following lines 

return the initial coordinates of the node number II of element N in array variable 

CCNODE and displacements in array variable DDNODE when added yields the 

current position of the node which is stored in an array variable called 

CURPOS(II,JJ) where II stands for node number of the element and JJ stands 

for coordinate number.. 

 
      include '/academic/marck62/common/blnk' 
      include '/academic/marck62/common/dimen' 
      include '/academic/marck62/common/array2' 
      include '/academic/marck62/common/space' 
      include '/academic/marck62/common/elmcom' 
      DIMENSION A(3),CCNODE(12),DDNODE(12),CURPOS(20,12) 
      DO 2 II=1,20,1 
       LINT=LM(II) 
       DO 1 JJ=1,3,1 
C THIS DETERMINES INITIAL COORDINATES OF THE NODES 
        JRDPRE=0 
        CALL VECFTC(CCNODE,VARS(IXORD),NCRDMX,NCRD,LINT,JRDPRE,2,1) 
C THIS DETERMINES THE DISPLACEMENTS OF THE NODES 
        JRDPRE=0 
        CALL VECFTC(DDNODE,VARS(IDSXT),NDEGMX,NDEG,LINT,JRDPRE,2,5) 
        CURPOS(II,JJ)=CCNODE(JJ)+DDNODE(JJ) 
    1  CONTINUE 
    2 CONTINUE 

 

A.2.5 Determination of Equivalent Layer Thickness 
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 In MARC, reinforcement is modeled as uniform layers of reinforcing 

material. Therefore in case of reinforcing bars, the equivalent thickness is 

evaluated by equating the cross-sectional area of circular reinforcing bars to that 

of the uniform layer as 

A n r
A t

rein

eq

=
=

l
l

π 2

         (A.1) 

where Arein is the actual reinforcement area, l  is the length of the element, n 

being number of reinforcement bars per unit length and r being the radius of a 

single reinforcing member. Aeq is the equivalent reinforcement area and t is the 

equivalent thickness which MARC uses. The tire producers mostly use epd (ends 

per decimeter) as the unit for the amount of reinforcing in a tire. The epd is one 

tenth of ends per meter, which is n. Equating both areas in Equation A.1 and 

solving for equivalent thickness yields 

t n r n d= =π π2 2

4
        (A.2) 

where n is number of circular reinforcing bars per meter, r is the radius and d is 

the diameter of circular reinforcing bars in meters. 

 

A.3 Axisymmetric Rebar Subroutine for Quadratic Elements 

 

 In axisymmetric models three or four types of reinforcement are used, 

these are the bead bundle, body ply, tread plies and sometimes the overlay. The 

bead bundle and overlay are perpendicular to the axisymmetic plane and their 

orientation do not change with deformation. The body ply is parallel to the inner 

surface of the tire and remains so in any deformation that is possible as shown in 

Figure A.2. The tread ply is in the plane formed by the tire inner surface and the 

line perpendicular to the axisymmetric plane, the ply angle is between the 

reinforcing fibers and the perpendicular to the axisymmetric plane as shown in 

Figure A.3. The following subroutine evaluates the rebar directions for 

axisymmetric tire model with quadratic elements. The tire modeled has bead 
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bundle, one textile body ply and two steel tread plies. The subroutine is for 

MARC K6.x versions. 

 
SUBROUTINE REBAR (N,NN,T,PR,TR,A) 
C VERSION 3.AXful, Ergin TONUK 
      IMPLICIT REAL *8 (A-H,O-Z) 
      LOGICAL belongToSet 
      include '/academic/marck62/common/blnk' 
      include '/academic/marck62/common/dimen' 
      include '/academic/marck62/common/array2' 
      include '/academic/marck62/common/space' 
      include '/academic/marck62/common/elmcom' 
      DIMENSION A(3),CCNODE(12),DDNODE(12),CURPOS(4,12), 
     /B(12),C(12),D(12) 
      CON=DATAN(1.D0)/45.D0 
      DO 2 II=1,4,1 
C THE FIRST NNODE NUMBERS OF LM ARE INTERNAL NODE NUMBERS! 
       LINT=LM(II) 
       DO 1 JJ=1,2,1 
        JRDPRE=0 
        CALL VECFTC(CCNODE,VARS(IXORD),NCRDMX,NCRD,LINT,JRDPRE,2,1) 
        JRDPRE=0 
        CALL VECFTC(DDNODE,VARS(IDSXT),NDEGMX,NDEG,LINT,JRDPRE,2,5) 
        CURPOS(II,JJ)=CCNODE(JJ)+DDNODE(JJ) 
    1  CONTINUE 
    2 CONTINUE 
      DO 3 JJ=1,2,1 
       B(JJ)=CURPOS(2,JJ)-CURPOS(1,JJ) 
       D(JJ)=CURPOS(4,JJ)-CURPOS(1,JJ) 
       C(JJ)=CURPOS(3,JJ)-CURPOS(2,JJ) 
    3 CONTINUE 
       DMAG=(DSQRT(D(1)**2+D(2)**2)+DSQRT(C(1)**2+C(2)**2))/2.D0 
       BL=DSQRT(B(1)**2+B(2)**2) 
       CL=DSQRT(C(1)**2+C(2)**2) 
       DL=DSQRT(D(1)**2+D(2)**2) 
C NORMALIZATION 
      DO 4 JJ=1,2,1 
       B(JJ)=B(JJ)/BL 
       C(JJ)=C(JJ)/CL 
       D(JJ)=D(JJ)/DL 
    4 CONTINUE  
      IF (belongToSet(0, n, 'bead_bundle').EQV..TRUE.)THEN 
       A(1)=0.D0 
       A(2)=0.D0 
       A(3)=1.D0 
       PR=0.5D0*DMAG 
       TR=0.9D0*DMAG 
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Figure A.2 Body Ply Reinforcement Direction in Axisymmetric Model 

 
       T=DMAG 
      ENDIF 
      IF (belongToSet(0, n, 'body_ply').EQV..TRUE.)THEN 
       A(1)=B(1) 
       A(2)=B(2) 
       A(3)=0.D0 
       PR=0.5D0*DMAG 
       TR=0.287D-3 
       T=DMAG 
      ENDIF 
      IF (belongToSet(0, n, 'tread_ply') .EQV. .TRUE.) THEN 
       IF (NN .LT. 3) THEN 
        ALP=-20.D0*CON 
        PR=0.3D0*DMAG 
       ELSE  
        ALP=20.D0*CON 
        PR=0.7D0*DMAG 
       END IF 
       CA=DCOS(ALP) 
       SA=DSIN(ALP) 
       A(1)=SA*B(1) 
       A(2)=SA*B(2) 
       A(3)=CA 
       TR=0.162D-3 
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Figure A.3 Tread Ply Reinforcement Direction in Axisymmetric Model 

 
       T=DMAG 
       ENDIF 
      RETURN 
      END 
      
 
 
      logical function belongToSet (typeTarget, numTarget, setTarget) 
        
      implicit real*8 (a-h,o-z)          
 
        integer         typeTarget           ! must be an ipttyp (see below) 
        integer         numTarget            ! element number or node number, etc. 
                                             ! AFTER RENUMBERING!!!!!! 
        character*(*)   setTarget            ! Setname (LOWER CASE!!!) 
        
        character*1     name 
        character*12    setName 
        dimension       iiname(12) 
 
 
        include '/academic/marck62/common/dimen' 
        include '/academic/marck62/common/setnam' 
        include '/academic/marck62/common/space' 
 
 
       do iset = 1, ndset                
 
        istype = ints (ipttyp + (iset-1)) 
 
        if ( istype.eq.typeTarget ) then 
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         isname = (iptnam +(iset-1)*12) 
         do j=1,12 
           iiname(j) = ints(isname+j-1) 
           write(name,'(A1)') iiname(j) 
           setName(j:j) = name 
           if (name .ne. ' ') then 
             isnamlen = j 
            end if 
          end do 
                     
          if (setName (1:isnamlen) .eq. setTarget) then 
 
           isnumb = ints (iptnum+iset-1)  
            
           ieptr   = iptbeg + ints (iptloc+iset-1)-1 
 
           do i=1, isnumb 
             iexx = ints(ieptr+i-1) 
             if (numTarget .eq. iexx) then 
               belongToSet = .True. 
               return 
             end if 
            end do 
           belongToSet = .False. 
           return 
          endif 
 
         end if 
 
        end do 
 
        write(*,*) 'belongToSet: set *',setTarget,'* not found' 
        belongToSet = .FALSE. 
 
 
        return 
        end       

 

A.4 Rebar Subroutines for Three-Dimensional Solid Elements 

 

 In three dimensional models, due to ground contact, deformations are 

larger when compared to the axisymmetric models and may cause circumferential 

displacements as well. The various rebar subroutines written for three-

dimensional analyses considers these deformations as well as displacements due 

to tire rolling in cornering analysis. 

 

 

A.4.1 Rebar Subroutine for 20 Node Continuum Element 
 

In three-dimensional models rim is not modeled and fixed boundary 

condition is applied to tire bead therefore bead bundle loses its essential effect 

and is not modeled. Body ply is again in 1-2 direction and remains parallel to 
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current (deformed) 1-2 direction. However, due to ground contact, severe 

deformations occur on tire sidewall and nodes 1-9-2 may deviate substantially 

from being collinear which necessities considering different rebar directions 

depending on the position of the integration point as shown in Figure A.4. The 

tread ply is parallel to 1-2-3-4 face and the ply angle is measured from side 1-4 as 

shown in Figure A.5. The following subroutine is for MARC K6.x family and for 

20 noded (element 23) rebar. 

 

Figure A.4 Body Ply Reinforcement Direction in Three-Dimensional Model 
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Figure A.5 Tread Ply Reinforcement Direction in Three Dimensional Model 
(only Corner Nodes are Shown for Simplicity) 

 
SUBROUTINE REBAR (N,NN,T,PR,TR,A) 
C VERSION 3.21, 09.10.1997, for 3D Model! 
C CONSIDERS LARGE SECTOR ROTATIONS! 
C DETECTS THE ELEMENT SET AND DEFINES REBAR DIRECTION AND THICKNESS ACCORDINGLY! 
      IMPLICIT REAL *8 (A-H,O-Z) 
      LOGICAL belongToSet,RESULT1,RESULT2,RESULT3,RESULT4 
      include '/academic/marck62/common/blnk' 
      include '/academic/marck62/common/dimen' 
      include '/academic/marck62/common/array2' 
      include '/academic/marck62/common/space' 
      include '/academic/marck62/common/elmcom' 
      DIMENSION A(3),CCNODE(12),DDNODE(12),CURPOS(20,12),DCM(3), 
     /B(12),C(12),D(12),B1(12),B2(12),C1(12),C2(12),D1(12),D2(12) 
C DEPENDING ON ELEMENT SET THE REBAR PROPERTIES ARE ASSIGNED BELOW! 
C ALPHA IS THE ANGLE BETWEEN THE PLY AND 12 DIRECTION 
      DO 2 II=1,20,1 
      LINT=LM(II) 
      DO 1 JJ=1,3,1 
C THIS DETERMINES INITIAL COORDINATES OF THE NODES 
      JRDPRE=0 
      CALL VECFTC(CCNODE,VARS(IXORD),NCRDMX,NCRD,LINT,JRDPRE,2,1) 
C THIS DETERMINES THE DISPLACEMENTS OF THE NODES 
      JRDPRE=0 
      CALL VECFTC(DDNODE,VARS(IDSXT),NDEGMX,NDEG,LINT,JRDPRE,2,5) 
      CURPOS(II,JJ)=CCNODE(JJ)+DDNODE(JJ) 
C      WRITE(*,*)'Current Position, Node, DOF:',CURPOS(II,JJ),II,JJ 
    1 CONTINUE 
    2 CONTINUE 
      DO 3 JJ=1,3,1 
      B(JJ)=CURPOS(2,JJ)-CURPOS(1,JJ) 
      D(JJ)=CURPOS(4,JJ)-CURPOS(1,JJ) 
      C(JJ)=CURPOS(5,JJ)-CURPOS(1,JJ) 
      B1(JJ)=CURPOS(10,JJ)-CURPOS(2,JJ) 
      B2(JJ)=CURPOS(3,JJ)-CURPOS(10,JJ) 
      C1(JJ)=CURPOS(17,JJ)-CURPOS(1,JJ) 
      C2(JJ)=CURPOS(5,JJ)-CURPOS(17,JJ) 
      D1(JJ)=CURPOS(12,JJ)-CURPOS(1,JJ) 
      D2(JJ)=CURPOS(4,JJ)-CURPOS(12,JJ) 
C      WRITE(*,*)'Directions',B(JJ),C(JJ),D(JJ) 
    3 CONTINUE 
C ELEMENTAL UNIT VECTORS (MAY not BE ORTHONORMAL!!) 
C ELEMENT THICKNESS 15!! 
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      BMAG=DSQRT(B(1)**2+B(2)**2+B(3)**2) 
      CMAG=DSQRT(C(1)**2+C(2)**2+C(3)**2) 
      DMAG=DSQRT(D(1)**2+D(2)**2+D(3)**2) 
      CON=3.1415926536D0/180.D0 
      T=CMAG 
      DO 4 JJ=1,3,1 
      B(JJ)=B(JJ)/BMAG 
      C(JJ)=C(JJ)/CMAG 
      D(JJ)=D(JJ)/DMAG 
    4 CONTINUE 
      IF (belongToSet(0, n, 'bead_bundle').EQV..TRUE.)THEN 
C REBAR IN 15 
      IF (NN .LT. 3) THEN 
       A(1)=D1(1) 
       A(2)=D1(2) 
       A(3)=D1(3) 
      ELSE 
       A(1)=D2(1) 
       A(2)=D2(2) 
       A(3)=D2(3) 
      ENDIF 
C      WRITE(*,*)'Rebar Orientation',A(1),A(2),A(3) 
      PR=0.5*CMAG 
      TR=1.D-3 
      ENDIF 
      IF (belongToSet(0, n, 'body_ply').EQV..TRUE.)THEN 
C REBAR IN 12 DIRECTION! 
      A(1)=B(1) 
      A(2)=B(2) 
      A(3)=B(3) 
C      WRITE(*,*)'Rebar Orientation',A(1),A(2),A(3) 
      PR=0.5*CMAG 
      TR=0.12D-3 
      ENDIF 
      IF (belongToSet(0, n, 'tread_ply') .EQV. .TRUE.) THEN 
       IF (NN .LT. 5) THEN 
        ALP=20.D0*CON 
        CA=DCOS(ALP) 
        SA=DSIN(ALP) 
         IF (NN .LT. 3) THEN 
          A(1)=D1(1)*CA+B(1)*SA 
          A(2)=D1(2)*CA+B(2)*SA 
          A(3)=D1(3)*CA+B(3)*SA 
         ELSE 
          A(1)=D2(1)*CA+B(1)*SA 
          A(2)=D2(2)*CA+B(2)*SA 
          A(3)=D2(3)*CA+B(3)*SA 
         ENDIF 
        PR=0.3D0*CMAG 
       ELSE 
        ALP=-20.D0*CON 
        CA=DCOS(ALP) 
        SA=DSIN(ALP) 
         IF (NN .LT. 7) THEN 
          A(1)=D1(1)*CA+B(1)*SA 
          A(2)=D1(2)*CA+B(2)*SA 
          A(3)=D1(3)*CA+B(3)*SA 
         ELSE 
          A(1)=D2(1)*CA+B(1)*SA 
          A(2)=D2(2)*CA+B(2)*SA 
          A(3)=D2(3)*CA+B(3)*SA 
         ENDIF 
        PR=0.7D0*CMAG 
C      WRITE(*,*)'Rebar Orientation',A(1),A(2),A(3) 
       ENDIF 
      TR=0.12D-3 
      ENDIF 
      RETURN 
      END 
      
 
 
      logical function belongToSet (typeTarget, numTarget, setTarget) 
        
      implicit real*8 (a-h,o-z)          
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c      external: 
        integer         typeTarget           ! must be an ipttyp (see below) 
        integer         numTarget            ! element number or node number, etc. 
                                             ! AFTER RENUMBERING!!!!!! 
        character*(*)   setTarget            ! Setname (LOWER CASE!!!) 
        
c      internal: 
        character*1     name 
        character*12    setName 
        dimension       iiname(12) 
 
 
c      common blocks: 
        include '/academic/marck62/common/dimen' 
        include '/academic/marck62/common/setnam' 
        include '/academic/marck62/common/space' 
 
 
c In the common block /setnam/, the following variables are defined: 
c       ndset:   number of defined Sets 
c       nsetmx: maximum number of Sets corresponding parametercard SETNAME 
c       (default: nsetmx =10) 
c       iptnam: pointer to the Setname. Each Setname takes 12 
c               characters and will be stored in integer format. 
c       ipttyp: pointer to the set type: 
c               ipttyp  Set type 
c                 0     Elements 
c                 1     Nodes 
c                 2     Integration points 
c                 3     Layers 
c                 4     Degrees-of-freedom 
c                 5     Increments 
c       iptnum: pointer to the number of elements in set 
c       iptloc: pointer to the stored elements in set 
c       iptbeg: pointer to all stored elements 
c 
c 
 
C        write(*,*) 'belongToSet: set type=',typeTarget, 
C     -    '   num=',numTarget,'  name= *',setTarget,'*' 
 
c     loop over all sets 
C       write(*,*)'nset=',nset,'ndset=',ndset 
       do iset = 1, ndset                
 
        istype = ints (ipttyp + (iset-1)) 
 
        if ( istype.eq.typeTarget ) then 
 
         isname = (iptnam +(iset-1)*12) 
         do j=1,12 
           iiname(j) = ints(isname+j-1) 
           write(name,'(A1)') iiname(j) 
           setName(j:j) = name 
           if (name .ne. ' ') then 
             isnamlen = j 
            end if 
          end do 
                     
          if (setName (1:isnamlen) .eq. setTarget) then 
c           write(*,*) 'belongToSet: identified set *',setName(1:isnamlen),'*' 
 
           isnumb = ints (iptnum+iset-1)  
            
           ieptr   = iptbeg + ints (iptloc+iset-1)-1 
 
           do i=1, isnumb 
             iexx = ints(ieptr+i-1) 
             if (numTarget .eq. iexx) then 
               belongToSet = .True. 
C               write(*,*) 'belongToSet: matched:  type=',typeTarget, 
C     -           '   num=',numTarget,'   set=',setTarget 
               return 
             end if 
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            end do 
           belongToSet = .False. 
           return 
          endif 
 
         end if 
 
        end do 
 
        write(*,*) 'belongToSet: set *',setTarget,'* not found' 
        belongToSet = .FALSE. 
 
 
        return 
        end       

 
 

A.4.2 Rebar Subroutine for 8 Node Continuum Element 
 

 During static tire models, the obvious disadvantage of the presented rebar 

subroutines showed up. All the rebar directions were using the triad formed by 

nodes 1-2, 1-4 and 1-5 with the modification that the integration points closer to 

nodes 1 and 4 use 1-9 and other two use 9-2 instead of 1-2 to consider bending. 

However especially for coarse meshes there are considerable directional 

differences among the element edges. The difference is due to both sector 

rotation and deformations. The modification done on rebar subroutines for 

MARC K7.x family considers the inner tire surface (which may be the face 

formed by nodes 1-2-3-4 or 1-4-8-5 or 2-1-5-6 that can be selected by user in 

contrast to MARC K6 versions in which it must be the face formed by nodes 1-2-

3-4 only) as the surface to which the rebar layer is similar to. For rebar direction 

calculations however, the triad is formed by the three nodal directions which are 

closest to the integration point are used. In this context, independent of the 

position of the rebar layer in the element, the inner tire surface is used for the two 

unit vectors. With the availability of MARC K7 versions, the eight-noded three 

dimensional rebar elements became available and the tire model is converted to 8 

noded solid and rebar elements which produce smaller half-bandwidth and 

precise solutions in contact. The following rebar subroutine is written for MARC 

K7 versions and it yields the most precise results because it evaluates the 

direction cosines of each integration point independently as shown in Figure A.6. 
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Figure A.6 Triads Determined by Closest Edge 

 
SUBROUTINE REBAR (N,NN,T,PR,TR,A) 
C VERSION 4.00, 02.07.1998, for 3D Linear Coarse Model! 
C !!!new!!!  THIS VERSION USES THE NEAREST CORNER TRIAD!  !!!new!!! 
C CONSIDERS LARGE SECTOR ROTATIONS! 
C DETECTS THE ELEMENT SET AND DEFINES REBAR DIRECTION AND THICKNESS ACCORDINGLY! 
      IMPLICIT REAL *8 (A-H,O-Z) 
      LOGICAL belongToSet 
      include '/academic/marck72/marck72/common/blnk' 
      include '/academic/marck72/marck72/common/dimen' 
      include '/academic/marck72/marck72/common/array2' 
      include '/academic/marck72/marck72/common/space' 
      include '/academic/marck72/marck72/common/elmcom' 
      DIMENSION A(3),NN(3),CCNODE(12),DDNODE(12),CURPOS(8,3), 
     /S12(3),S14(3),S15(3),S23(3),S26(3),S34(3),S37(3),S48(3), 
     /S56(3),S58(3),S67(3),S78(3) 
C DEPENDING ON ELEMENT SET THE REBAR PROPERTIES ARE ASSIGNED BELOW! 
      DO 2 II=1,8,1 
       LINT=LM(II) 
       DO 1 JJ=1,3,1 
C THIS DETERMINES INITIAL COORDINATES OF THE NODES 
        JRDPRE=0 
        CALL VECFTC(CCNODE,VARS(IXORD),NCRDMX,NCRD,LINT,JRDPRE,2,1) 
C THIS DETERMINES THE DISPLACEMENTS OF THE NODES 
        JRDPRE=0 
        CALL VECFTC(DDNODE,VARS(IDSXT),NDEGMX,NDEG,LINT,JRDPRE,2,5) 
        CURPOS(II,JJ)=CCNODE(JJ)+DDNODE(JJ) 
C       WRITE(*,*)'Current Position, Node, DOF:',CURPOS(II,JJ),II,JJ 
    1  CONTINUE 
    2 CONTINUE 
      DO 3 JJ=1,3,1 
       S12(JJ)=CURPOS(2,JJ)-CURPOS(1,JJ) 
       S14(JJ)=CURPOS(4,JJ)-CURPOS(1,JJ) 
       S15(JJ)=CURPOS(5,JJ)-CURPOS(1,JJ) 
       S23(JJ)=CURPOS(3,JJ)-CURPOS(2,JJ) 
       S26(JJ)=CURPOS(6,JJ)-CURPOS(2,JJ) 
       S34(JJ)=CURPOS(4,JJ)-CURPOS(3,JJ) 
       S37(JJ)=CURPOS(7,JJ)-CURPOS(3,JJ) 
       S48(JJ)=CURPOS(8,JJ)-CURPOS(4,JJ) 
       S56(JJ)=CURPOS(6,JJ)-CURPOS(5,JJ) 
       S58(JJ)=CURPOS(8,JJ)-CURPOS(5,JJ) 
       S67(JJ)=CURPOS(7,JJ)-CURPOS(6,JJ) 
       S78(JJ)=CURPOS(8,JJ)-CURPOS(7,JJ) 
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    3 CONTINUE 
C ELEMENTAL UNIT VECTORS (MAY not BE ORTHONORMAL!!) 
C ELEMENT THICKNESS 14 (DMAG)!! 
      S12MAG=DSQRT(S12(1)**2+S12(2)**2+S12(3)**2) 
      S14MAG=DSQRT(S14(1)**2+S14(2)**2+S14(3)**2) 
      S15MAG=DSQRT(S15(1)**2+S15(2)**2+S15(3)**2) 
      S23MAG=DSQRT(S23(1)**2+S23(2)**2+S23(3)**2) 
      S26MAG=DSQRT(S26(1)**2+S26(2)**2+S26(3)**2) 
      S34MAG=DSQRT(S34(1)**2+S34(2)**2+S34(3)**2) 
      S37MAG=DSQRT(S37(1)**2+S37(2)**2+S37(3)**2) 
      S48MAG=DSQRT(S48(1)**2+S48(2)**2+S48(3)**2) 
      S56MAG=DSQRT(S56(1)**2+S56(2)**2+S56(3)**2) 
      S58MAG=DSQRT(S58(1)**2+S58(2)**2+S58(3)**2) 
      S67MAG=DSQRT(S67(1)**2+S67(2)**2+S67(3)**2) 
      S78MAG=DSQRT(S78(1)**2+S78(2)**2+S78(3)**2) 
      CON=3.1415926536D0/180.D0 
      T=(S14MAG+S23MAG+S67MAG+S58MAG)/4.D0 
C NORMALIZE THE VECTORS! 
      DO 4 JJ=1,3,1 
       S12(JJ)=S12(JJ)/S12MAG 
       S14(JJ)=S14(JJ)/S14MAG 
       S15(JJ)=S15(JJ)/S15MAG 
       S23(JJ)=S23(JJ)/S23MAG 
       S26(JJ)=S26(JJ)/S26MAG 
       S34(JJ)=S34(JJ)/S34MAG 
       S37(JJ)=S37(JJ)/S37MAG 
       S48(JJ)=S48(JJ)/S48MAG 
       S56(JJ)=S56(JJ)/S56MAG 
       S58(JJ)=S58(JJ)/S58MAG 
       S67(JJ)=S67(JJ)/S67MAG 
       S78(JJ)=S78(JJ)/S78MAG 
    4 CONTINUE 
      IF (belongToSet(0, n, 'body_ply') .EQV. .TRUE.)THEN 
C REBAR IN 12 DIRECTION! 
C LAYERS SIMILAR TO 2-1-5-6 
       IF (NN(3) .LT. 3) THEN  
        A(1)=S12(1) 
        A(2)=S12(2) 
        A(3)=S12(3) 
       ELSE 
        A(1)=S56(1) 
        A(2)=S56(2) 
        A(3)=S56(3) 
      END IF 
c       WRITE(*,*)'Textile:',A(1),A(2),A(3) 
       PR=0.1D0*T 
       TR=0.287D-3 
      ENDIF 
      IF (belongToSet(0, n, 'tread_ply') .EQV. .TRUE.) THEN 
C REBAR IN 12-15 PLANE, ALPHA WITH 15! 
       IF (NN(2) .LT. 2) THEN 
        ALP=20.D0*CON 
        PR=0.3D0*T 
       ELSE 
        ALP=-20.D0*CON 
        PR=0.5D0*T 
       ENDIF 
       CA=DCOS(ALP) 
       SA=DSIN(ALP) 
       IF (NN(3) .EQ. 2) THEN 
        A(1)=S15(1)*CA+S12(1)*SA 
        A(2)=S15(2)*CA+S12(2)*SA 
        A(3)=S15(3)*CA+S12(3)*SA 
       ENDIF 
       IF (NN(3) .EQ. 1) THEN 
        A(1)=S26(1)*CA+S12(1)*SA 
        A(2)=S26(2)*CA+S12(2)*SA 
        A(3)=S26(3)*CA+S12(3)*SA 
       ENDIF 
       IF (NN(3) .EQ. 4) THEN 
        A(1)=S15(1)*CA+S56(1)*SA 
        A(2)=S15(2)*CA+S56(2)*SA 
        A(3)=S15(3)*CA+S56(3)*SA 
       ENDIF 
       IF (NN(3) .EQ. 3) THEN 
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        A(1)=S26(1)*CA+S56(1)*SA 
        A(2)=S26(2)*CA+S56(2)*SA 
        A(3)=S26(3)*CA+S56(3)*SA 
       ENDIF 
c       WRITE(*,*)'Tread2:',A(1),A(2),A(3) 
       TR=0.162D-3 
      ENDIF 
      RETURN 
      END 
      
 
 
      logical function belongToSet (typeTarget, numTarget, setTarget) 
        
      implicit real*8 (a-h,o-z)          
 
c      external: 
        integer         typeTarget           ! must be an ipttyp (see below) 
        integer         numTarget            ! element number or node number, etc. 
                                             ! AFTER RENUMBERING!!!!!! 
        character*(*)   setTarget            ! Setname (LOWER CASE!!!) 
        
c      internal: 
        character*1     name 
        character*12    setName 
        dimension       iiname(12) 
 
 
c      common blocks: 
        include '/academic/marck72/marck72/common/dimen' 
        include '/academic/marck72/marck72/common/setnam' 
        include '/academic/marck72/marck72/common/space' 
 
 
c In the common block /setnam/, the following variables are defined: 
c       ndset:   number of defined Sets 
c       nsetmx: maximum number of Sets corresponding parametercard SETNAME 
c       (default: nsetmx =10) 
c       iptnam: pointer to the Setname. Each Setname takes 12 
c               characters and will be stored in integer format. 
c       ipttyp: pointer to the set type: 
c               ipttyp  Set type 
c                 0     Elements 
c                 1     Nodes 
c                 2     Integration points 
c                 3     Layers 
c                 4     Degrees-of-freedom 
c                 5     Increments 
c       iptnum: pointer to the number of elements in set 
c       iptloc: pointer to the stored elements in set 
c       iptbeg: pointer to all stored elements 
c 
c 
 
c        write(*,*) 'belongToSet: set type=',typeTarget, 
c     -    '   num=',numTarget,'  name= *',setTarget,'*' 
 
c     loop over all sets 
c       write(*,*)'nset=',nset,'ndset=',ndset 
       do iset = 1, ndset                
 
        istype = ints (ipttyp + (iset-1)) 
 
        if ( istype.eq.typeTarget ) then 
 
         isname = (iptnam +(iset-1)*12) 
         do j=1,12 
           iiname(j) = ints(isname+j-1) 
           write(name,'(A1)') iiname(j) 
           setName(j:j) = name 
           if (name .ne. ' ') then 
             isnamlen = j 
            end if 
          end do 
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          if (setName (1:isnamlen) .eq. setTarget) then 
c          write(*,*) 'belongToSet: identified set *' 
c     -     ,setName(1:isnamlen),'*' 
isnumb = ints (iptnum+iset-1)  
            
           ieptr   = iptbeg + ints (iptloc+iset-1)-1 
           do i=1, isnumb 
             iexx = ints(ieptr+i-1) 
             if (numTarget .eq. iexx) then 
               belongToSet = .TRUE. 
c               write(*,*) 'belongToSet: matched:  type=',typeTarget, 
c     -           '   num=',numTarget,'   set=',setTarget 
               return 
             end if 
            end do 
           belongToSet = .FALSE. 
           return 
          endif 
         end if 
        end do 
        write(*,*) 'belongToSet: set *',setTarget,'* not found' 
        belongToSet = .FALSE. 
        return 
        end 
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APPENDIX B 

ANALYSIS OPTIONS IN MARC FOR CORNERING ANALYSIS 

 

 

Parameter Value Comments 
Loadcase Inflation  

Convergence Testing Relative, 0.1 
N/N 

 

Adaptive Loading Equilibrium  

Max # Increments 50  

Desired # of Recycles 3  

Initial Fraction 0.03  

Maximum Fraction 1  

Minimum Load Step 
Multiplier 

0.001  

Maximum Load Step 
Multiplier 

1000  

Minimum Time Step 0  

Solution Control Full Newton-
Raphson 

 

Contribution of Initial 
Stress to Stiffness 

Full  

Contact Force Removal Immediate  

 
 

  

Loadcase Pressing  

Convergence Testing Absolute, 50 N Due to large reaction forces at the axle 
nodes, absolute convergence testing has 
to be used. 

Fixed Loading 18 Steps  

Solution Control Full Newton-
Raphson 

 

Contribution of Initial 
Stress to Stiffness 

Full  

Contact Force Removal Immediate  
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Loadcase Rolling  

Convergence Testing Absolute, 50 N Due to large reacton forces at the axle 
nodes, absolute convergence testing has 
to be used. 

Fixed Loading 400 Steps  

Solution Control Full Newton-
Raphson 

 

Contribution of Initial 
Stress to Stiffness 

Full  

Contact Force Removal Immediate  

   

Analysis Options   

Large Displacement On  

Follower Force On  

Elasticity Procedure Large Strain-
Total Lagrange

 

   

Job Parameters   

Memory Allocation 25 000 000 Although MARC can dynamically 
allocate the memory required, for restart 
purposes using a fixed and conservative 
amount is preferred. 

Element Storage (ELSTO) On If ELSTO is off, MARC writes the 
stiffness matrix that cannot be allocated 
into physical memory into .t02 
automatically, if ELSTO is on, the same 
data is written into .t03 file. 

Bandwidth Optimization On This reduces the storage requirements for 
the stiffness matrix but takes some CPU 
time before the analysis starts. Since the 
analysis is rather long, it is preferred to 
optimize the bandwith. 

State Storage All Points Stress state may be stored for all 
inetgration points or for centroid. 

Solver Direct Profile  

   

Contact Control   

Distance Tolerance 0 MARC evaluates the contact tolerance 
depending on the geometry and for 
present problem it is less than 0.45 mm.

Distance Tolerance Bias 0  

Deformable-Deformable 
Method 

Single Sided Since tire does not contact itself during 
normal operation, to conserve CPU time, 
the detection of a deformable body 
touching itself is not checked. 

Separation Criteria Force, 1 N Seperation force, if left blank is taken to 
be equal to the largest residual force 
which is not suitable. 
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Increment Current  

Chattering Supressed  

Friction Type Coulomb  

Method Nodal Force  

Relative Sliding Velocity 0.001  

Increment Splitting Iterative  

User Subrotine r4.f  
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