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ABSTRACT

WATERBORNE PARASITIC PROTOZOA REMOVAL CAPACITIES OF
WASTEWATER TREATMENT PLANTS WITH VARYING PROCESSES

Onursal, Ashi
Master of Science, Environmental Engineering
Supervisor: Prof. Dr. Biilent I¢gen

August 2022, 148 pages

The parasitic protozoa Giardia intestinalis, Entamoeba histolytica, Blastocystis
hominis, and Cryptosporidium parvum are causative agents for human giardiasis,
amebiasis, blastocytosis (formerly known as hominis infection) and
cryptosporidiosis, respectively. These infections are mostly associated with
waterborne diseases. Due to the lack of regulations for monitoring these protozoa in
the discharge point of wastewater treatment plants (WWTPs), the discharges that
reach to surface waters lead to waterborne transmission. This highlights the
importance of WWTPs’ removal capacities for improving water safety sanitation and
hygiene to minimize the spread of infectious parasitic agents. For this reason, in this
study, five different types of WWTPs from Ankara-Turkey including conventional
activated sludge (CAS), biological nutrient removal (BNR), sequencing batch
reactor (SBR), membrane bioreactor (MBR), and WWTP with coagulation-
flocculation and UV disinfection (CoFIUV) units were investigated over a year,
seasonally in terms of their parasitic protozoa removal capacities. Seasonal
abundances of these protozoa-specific genes in both influents and effluents of each

WWTP were determined by quantitative polymerase chain reaction. The reduction



of protozoan rDNA copies in the effluent wastewater samples compared to the
influent wastewater samples was assessed as removal capacity in logio reduction
values (LRVs). LRVs 1 and 2 were reachable for G. intestinalis in CAS, SBR,
CoFIUV and MBR, for B. hominis in CAS, BNR and CoFIUV and for C. parvum
and E. histolytica in all types of WWTPs tested. LRVs > 3 were reachable for E.
histolytica in CoFIUV and MBR, for B. hominis in CAS, BNR, SBR and MBR and
for C. parvum in all types of WWTPs tested. However, for G. intestinalis none of
the WWTPs tested were able to reach LRV > 3. Significant seasonal variations were
observed in SBR for G. intestinalis, in CAS, SBR, and CoFIUV for E. histolytica, in
all types of WWTPs tested for B. hominis, and in CAS for C. parvum (p<0.05). The
results elucidated that the removal of protozoa in WWTPs was highly affected by
the process used and the discharges of these WWTPs could need further monitoring

and surveillance to minimize the potential risk to public health.

Keywords: Gastrointestinal diseases, WWTP, protozoa removal, qPCR
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0z

FARKLI PROSESLERE SAHIP ATIK SU ARITMA TESIiSLERINDE SU
KAYNAKLI PARAZITIK PROTOZOALARIN GIDERIM
KAPASITESININ BELIRLENMESI

Onursal, Ash
Yiiksek Lisans, Cevre Mithendisligi
Tez Yoneticisi: Prof. Dr. Biilent Icgen

Agustos 2022, 148 sayfa

Giardia intestinalis, Entamoeba histolytica, Blastocystis hominis ve
Cryptosporidium parvum, sirasiyla giardiasis, amebiasis, blastocytosis ve
cryptosporidiosis’e sebep olan protozoon parazitlerdir. Bu enfeksiyonlar oldukc¢a
yaygindir ve ¢ogunlukla su kaynaklidir. Bu protozoonlarin atiksu aritma tesislerinin
(AAT'ler) desarj noktalarinda izlenmesine yonelik diizenlemelerin olmamasi
nedeniyle, yiizey sularina ulasan desarjlar su yoluyla bulasmalarina yol agmaktadir.
Bu durum, su giivenligi sanitasyonu ve hijyeni acisindan AAT'lerin parazitleri
uzaklastirma kapasitelerinin Onemini ortaya c¢ikarmaktadir. Bu nedenle, bu
calismada Ankara-Tiirkiye'de bulunan konvansiyonel aktif camur (CAS), biyolojik
besin giderimi (BNR), ardisik kesikli reaktdr (SBR), membran biyoreaktér (MBR)
ve koagiilasyon-flokiilasyon ve UV dezenfeksiyon iinitelerini igeren bir AAT
(CoFIUV) olmak fizere bes farkli AAT tiirii, secilen protozoonlarin giderim
kapasiteleri agisindan bir yil siiresince mevsimsel olarak incelenmistir. Her bir
AAT'in hem giris hem de ¢ikis suyunda bu protozoonlara 6zgili genler kantitatif
polimeraz zincir reaksiyonu ile belirlenmistir. Cikis suyu numunelerindeki

protozoan rDNA kopyalarimin giris suyu numunelerine kiyasla azalmasi, logio
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giderim degeri (LRV) seklinde belirlenmistir. LRV 1 ve 2'ye G. intestinalis igin
CAS, SBR, CoFIUV ve MBR'de, B. hominis i¢in CAS, BNR ve CoFIUV'de ve C.
parvum ve E. histolytica i¢in test edilen tim AAT’lerde ulasgilmistir. LRV > 3
degerlerine E. histolytica icin CoFIUV ve MBR'de, B. hominis i¢in CAS, BNR, SBR
ve MBR'de ve C. parvum i¢in test edilen tiim AAT’lerde ulasiimistir. Ancak, G.
intestinalis icin test edilen hi¢cbir AAT LRV 3'e ulasamamustir. Mevsimsel
farkliliklar G. intestinalis i¢in SBR'de, E. histolytica i¢in CAS, SBR ve CoFlUV'de,
B. hominis i¢in test edilen tim AAT’ lerde ve C. parvum igin CAS'ta gézlenmistir
(p<0.05). Sonuglar, AAT'lerde protozoalarin gideriminin kullanilan proseslerden
biiylik oOlcilide etkilendigini ve bu AAT'lerin desarjlarinin halk saglig1 acisindan
potansiyel riski en aza indirmek i¢in daha fazla izleme ve gdzetim gerektirebilecegini

ortaya koymustur.

Anahtar Kelimeler: Gastrointestinal hastaliklar, AAT, protozoa giderimi, gPCR
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CHAPTER 1

INTRODUCTION

Protozoa are unicellular eukaryotes found in most habitats worldwide. Most
protozoan species are free-living, however, some species live as parasites after
infecting animals. The parasitic stage of protozoan species that actively feeds and
proliferates is called the trophozoite stage, while cyst is the stage with a protective
membrane or thickened wall. Infections caused by these parasites range from
asymptomatic to life-threatening, depending on type of parasite and resistance of the

host (Tortora et al. 2016).

One of the easiest means of transmission of these parasites is the consumption of
water contaminated with protozoan cysts. Such waterborne parasitic protozoans are
increasingly causing serious diseases in the world with symptoms such as nausea,
abdominal pain, vomiting, diarrhea, and fever (Gallas-Lindemann et al. 2016).
Moreover, since these protozoa form cysts, they are resistant to harsher
environmental conditions and to disinfection (Kitajima et al. 2014). Therefore, these
cysts are also responsible for the survival and transmission of parasites (Sukprasert
et al. 2008). Cysts are transmitted to humans via a fecal-oral route through water and
food contaminated with animal or human feces (Dungeni et al. 2010). According to
the record of the World Health Organization (WHO), only diarrheal diseases are
responsible for 1.7 billion cases each year. They are mostly caused by poor water
sanitation and kill 525000 children under the age of 5 mostly in low-income

countries (WHO 2022).

Dissemination of these parasitic protozoa increases humans' hospitalization and
mortality rates, therefore, they are considered as a serious environmental problem

(CDC 2022). These parasitic protozoa can spread to the environment, especially to



water bodies such as rivers, lakes, and wastewater treatment plants (WWTPs) from
the fecal matter of humans and animals. As they are especially resistant to
disinfection because of cysts they can go past wastewater treatment procedures in
WWTPs and spread right to the receiving bodies. Water from these receiving water
bodies like rivers is then used in animal husbandry, agricultural irrigation during
which humas are exposed to risk (Aghalari et al. 2020). Therefore, assessing the
capacity of WWTPs with different processes regarding protozoan parasites is of
great importantance. For this reason, in this study, five common types of WWTPs
with varying processes consisting of conventional activated sludge (CAS),
sequencing batch reactor (SBR), biological nutrient removal (BNR), a WWTP with
coagulation-flocculation and UV disinfection unit (CoFIUV) and membrane
bioreactor (MBR) were assessed for their seasonal removal capacities of four
protozoan parasites commonly seen in Turkey namely Giardia intestinalis (causative
agent of giardiasis), Cryptosporidium parvum (causative agent of cryptosporidiosis),
Entamoeba histolytica (causative agent of amebiasis) and Blastocystis hominis

(causative agent of blastocytosis).

In Chapters 2, 3, 4, and 5 a literaure review of this study, materials and methods of
the experiments conducted, results and discussion of the experimental results and

conclusion and recommendations are given, respectively.



CHAPTER 2

LITERATURE REVIEW

2.1 Importance of protozoa

Protozoa belong to unicellular eukaryotes (Protists) along with algae and lower
fungi. Protists are subdivided into three groups namely plant-like algae, fungi-like
slime molds, and animal-like protozoa. However, these groups often overlap
(Tortora et al. 2016). Although the word "protozoa" refers to the "first animals,"
which describe animal like nutrition, protozoa are quite distinct from animals.
Trophozoites, which are in the feeding and growth stages, consume bacteria and
small nutrients. Although some protozoa are a part of the normal microbiota of
animals, a few of them causes serious damage to health and economy (Tortora et al.
2016b). Protozoa are divided into taxonomic groups according to their motility;
Sarcodina (amoeba), Mastigophora (flagellates), Ciliophora (ciliates) (Figure 2.1).
A non-motile group also exists called Apicomplexa that are all parasitic for higher
animals (Madigan et al. 2006).

Protozoa usually reproduce asexually via budding, schizogony, or fission. However
sexual reproduction via conjugation has been observed in some protozoa and some
protozoa produce gametes to form diploid zygote during reproduction (Tortora et al.
2016b). Under unfavorable conditions some protozoa especially parasitic ones
produce protective capsules called cysts. The cysts formed by the members of the

phylum Apicomplexa are called oocysts (Tortora et al. 2016).
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Figure 2.1. Main groups of protozoa(Pelczar 2020).

Enteric protozoa are common parasites that can be found in the intestines of humans
and other mammals. They can be found in fecally contaminated water and
transmitted to humans and other mammals (Guidelines for Canadian Drinking Water
Quality Guideline Technical Document Enteric Protozoa: Giardia and
Cryptosporidium 2019). Infections caused by such protozoa range from
asymptomatic to life-threatening symptoms, depending on both the parasite and the
host resistance. The common symptom of these parasitic protozoa infections is
diarrhea. Diarrheal diseases seem to be one of the leading causes of death worldwide
and, it was reported that, in 2017, 1.6 million people died due to diarrheal diseases.
One-third of these deaths were children under the age of five and diarrheal diseases
were the third leading cause of child mortality (Dadonaite et.al. 2019). The infections
and outbreaks caused by these enteric protozoa are found to be underestimated and
are increasingly causing serious diseases throughout the world (Gallas-Lindemann
et al. 2016). Therefore, epidemics brought on by protozoan infections and diarrheal
diseases pose a risk to the general public health and need to be addressed

immediately.

In Turkey, commonly seen protozoan parasites causing gastrointestinal diseases are

recorded as Giardia intestinalis (causative agents of giardiasis), Cryptosporidium



parvum (causative agents of cryptosporidiosis), Entamoeba histolytica (causative
agents of amebiasis) and Blastocystis hominis (causative agents of blastocytosis)
(Akpolat et al. 2022; Tanriverdi Cayci et al. 2017). Therefore, this study especially
focused on the removal/reduction of these four parasites in WWTPs with varying

processess.

211 Giardia intestinalis

Giardia intestinalis is a unicellular eukaryotic microorganism with eight flagella and
two nuclei and is the causative agent of giardiasis, a common diarrheal disease

(Nosala et al. 2015).
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Figure 2.2. Image of G. intestinalis trophozoite and cyst stages and fecal-oral life cycle(Wiser 2021)

The life cycle of this parasite is very simple and consists of following stages;
trophozoite as vegetative state and cyst as transmittable state (Figure 2.2).
Transmission occurs either directly by contacting host or indirectly by consumption
of contaminated food or water (CDC 2021). The life cycle and transmission are
depicted in Figure 2.3. The cyst form is resistant to chlorination and UV disinfection
and often received from contaminated water sources. While passing through the
gastrointestinal tract, cysts can survive when they are exposed to pH changes and
bile. After that, they reach the small intestine and excyst to become trophozoites

which are motile and start cell divisions. These trophozoites can move through the



lumen of the small intestine with their flagella until they come across a suitable place
for attachment to colonize. Finally, the trophozoites encyst and mature cysts are
discarded into environment with feces (Nosala et al. 2015). The number of cysts
excreted with feces can reach up to millions per day, therefore giardiasis poses a
major public health concern in especially developing and even developed countries

(Nikaeen et al. 2003).
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Figure 2.3. Life cycle and transmission of G. intestinalis(CDC 2017)

Symptoms of infections range from asymptomatic to acute watery diarrhea, nausea,
epigastric symptoms, and weight loss. Worldwide, an average of 200 million cases
of giardiasis are diagnosed annually (Hooshyar et al. 2019). G. intestinalis is one of
the commonly seen parasitic protozoan species in Turkey. In the last ten years, this
parasite was found to be the second commonly seen parasite being found in almost
32 % of 6% of diarrhea patients (Akpolat et al. 2022). In another study this parasite
was found in 4.7% of 7.5% of diarrhea patients (Giilmez et al. 2013). Giardiasis
epidemiology is impacted by a variety of factors, including the large number of cysts

that are released into the environment through the feces of infected hosts, the low



infectious dose that allows even a single cyst to spread infection, and the cysts' high
resistance to environmental stress, which allows them to survive in the environment
for months while maintaining infectiousness (CDC 2021). Because of the large
number of giardiasis cases around the world and the lack of research on the
prevention of infection, Giardia was placed on the World Health Organization’s
(WHO) Neglected Tropical Diseases Initiative in 2004 (Nosala et al. 2015). Most of
the treatment processes showed removals lower than 3 logarithmic reduction values
(LRV). While chlorine disinfection is not effective for Giardia, with appropriate

dosage UV disinfection exhibits promising removal values (CDC 2021).

2.1.2 Entamoeba histolytica

Entamoeba histolytica is a pseudopod-forming non-flagellate ameba that causes
amebic dysentery and liver abscess. E. dispar is a non-pathogenic parasite
morphologically identical to pathogenic E. histolytica, therefore, causing diagnostic
confusion. Although there are at least eight different amebae that live in the human
intestinal tract, these amebae are usually accepted as commensals except E.
histolytica (Plutzer et al. 2016). The cysts of this parasite are typically 12-15 um and
have four nuclei and the dimensions of the trophozoite form range between 10-60

pum having a single nucleus (Figure 2.4) (CDC 2019).

The life cycle of E. histolytica consists of cyst which is the infective form and
trophozoite which is the invasive form (Figure 2.5). (Peterson et al. 2011). Amebic
dysentery is spread mostly through contaminated water or food. Although the
stomach acid can kill trophozoites it is not effective on cysts. Therefore, cysts
ingested with the contaminated food or water can reach the intestinal tract.
Excystation occurs in the bowel lumen and the trophozoite form is released. Then
the trophozoite form starts to multiply in the epithelial cells of large intestine

resulting in severe dysentery (Tortora et al. 2016).



Figure 2.4. Microscopies of E. histolytica A) typical cyst with four nuclei, B) trophozoite form, C)
trophozoite showing phagocytic mouths (arrows)(Carrero et al. 2020).

Worldwide, E. histolytica causes 50 million infections and over 100000 deaths
annually (Hemmati et al. 2015). In Turkey, this parasite was the third most prevalent
parasite in the last ten years being seen in 3.75% of the 6% of diarrhea patients
(Akpolat et al. 2022). With the conventional wastewater treatment processes and
secondary sedimentation, only 0.3 LRV of E. histolytica was observed. While
chemical disinfectants such as chlorine showed 2 LRV reduction, UV disinfection

showed more promising results (Ben Ayed et al. 2017).
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Figure 2.5. Life cycle and transmission of E. histolytica(CDC 2019)

2.1.3 Blastocystis hominis

Blastocystis hominis is an intestinal parasite in humans and a wide range of animals.
This parasite belongs to the Stramenopiles (heterotrophic and photosynthetic
protozoa) and it is the only known Stramenopile that causes infection in humans
(Wawrzyniak et al. 2013). Other than the cyst form there are three major forms of

these parasites namely, vacuolar, granular, and ameboid (Figure 2.6) (Stenzel et al.

1996).



Figure 2.6. Morphological forms of Blastocystis sp. subtype 4 by phase-contrast microscopy. a)
Vacuolar and fecal cyst forms displaying extensive size variation (arrowheads). Note the refractile
appearance and loose outer coat of cyst (arrows). b) Granular form (arrowhead). ¢) Amoebid form

(arrow)(Tan 2008)

In humans, transmission occurs with the ingestion of contaminated water or food.
The transmissible stage is the cyst form and upon ingestion, the parasite excyst in
the large intestine turns into the vacuolar form. This vacuolar form divides via binary
fission and develops into either amoebid or granular form. Then, encystation occurs
in the colon, and the formed cysts are discarded with the feces (Figure 2.7) (de la
Cruz et al. 2017).

Symptoms caused by Blastocystis are often non-specific and can be confused with
infections caused by viruses or bacteria (de la Cruz et al. 2017). B. hominis is found
to be more prevalent in developing countries 50-60% than it is in developed countries
10% (Koloren et al. 2018). In Turkey, this species was the most frequently detected
parasite causing diarrhea in the last ten years, being seen with 57.61% of 6% of
diarrhea patients (Akpolat et al. 2022). In another study this parasite was found in
71.6% of 7.5% of diarrhea patients (Gililmez et al. 2013). Blastocystis is confirmed
to be robust toward wastewater treatment techniques and should be included as a

parameter when investigating parasites in wastewater (Suresh et al. 2005).
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Figure 2.7. Life cycle and transmission of B. hominis(CDC 2019)

214 Cryptosporidium parvum

Cryptosporidium parvum is an animal-like protist perceived as one of the major
causes of diarrheal diseases, contributing significantly to the global burden of
gastroenteritis (Figure 2.8). This parasite is the causative agent of cryptosporidiosis

(CDC 2019).

The life cycle of C. parvum begins with the ingestion of oocysts through
contaminated water or food (Figure 2.9). After the excystation in the upper small
intestine, the sporozoites are released to the mucus layer and turn into a trophozoite
there. At this point, the parasite divides mitotically resulting in type I meront,(Leitch
et al. 2011) and production of 6 to 8 merozoites occur. Merozoites are similar to the
sporozoites. Then these merozoites attach to enterocytes and start an asexual

infectious cycle or the merozoites can result in type II meront which produces 4
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merozoites. Similarly to type I, type Il merozoites attach to enterocytes and produce
either a macrogamont (female) or a microgamont (male). These male cells then
produce a diploid zygote which differentiates into oocysts. After the sexual cycle,
20% of the oocysts are formed with thin walls that are excyst within the host to cause
autoinfection, and 80% of them are thick-walled that are released into the

environment with the feces (Leitch et al. 2011).

Figure 2.8. SEM image of oocysts of C. parvum in the intestinal mucosa(Aboelsoued et al. 2019)

Cryptosporidiosis is cholera-like diarrhea that can last up to 10-14 days and can
become life-threatening in immunocompromised individuals including AIDS
patients (Tortora et al. 2016). C. parvum was found to be one of the leading causes
of moderate to severe diarrhea in toddlers ranking third after rotavirus and Shigella
(Sow et al. 2016). In Turkey, this parasite was one of the most seen diarrhea-causing
parasites with 0.52% of the 6% of diarrhea cases in the last ten years (Akpolat et al.
2022). Acknowledging the transmission links to poverty, and the effect of these
diseases on children, malnourished and immunocompromised people, this parasite
was added to WHO’s Neglected Diseases Initiative in 2004 (CDC 2019). Oocysts of
this parasite are resistant to chlorine and filtration must be used to remove them from

water (Tortora et al. 2016).

12



ODPDX Cryptosporidium spp.

© Thick-walled cocyst
P ingested by host

ﬁb\ Infective stage
ﬁ Diagnostic stage

)

Recreational water Drinking water

© contamination of water
and food with oocysts. ‘ﬂ;\ A
&

4 Thick-walled oocyst
IQ\ (sporulated) exits host

Cattle are major
hosts for C. parvum.

@ Thick-walled () Sporozoite @ Trophozoite Type | Meront
cocyst sporulated) D 00Nt — L) PN\~ D o
[ P ¥ GO (G 2,
A7) { \ (2
It /

Auto-infection

(]

Thin-walled

B s BMESE A
* Asexual Cycle )
oodiit L7 ferozo
(sporulated) Microgam =
)
[0
> @l Undiferentated
o 4 o] 4 v \
7

Gamont

f %/{ypa!lmemm
A Merozoites
RN 22

=) sexual Cycle

7

Figure 2.9. Life cycle and transmission of C. parvum(CDC 2019)

2.2  Dissemination routes of parasitic protozoa in the environment

The transmissible stage of parasitic protozoa, cysts, are excreted with feces therefore
their presence in wastewater is expected however there are no regulations or
guidelines concerning the occurrence of protozoa in treated wastewater that will be
discharged to water bodies or used during the agricultural processes (ben Ayed et al.
2017). The cysts of these parasites are insensitive to the common disinfection
processes employed in the WWTPs which makes it difficult to control the risk they
pose to humans. They can survive in wastewater for up to 1 year in cold weather
(Caccio et al. 2003). Since they are highly resistant to disinfectants and
environmental stress, and the conventional WWTPs are not designed to remove
them, parasitic protozoa may be present in the effluent of the plant and therefore can
be discharged into the receiving water bodies. Activated sludge systems showed
average removal rate of 1.75 LRV for protozoan cysts which indicates the possibility

of survival of protozoan cysts in the environment (Sroka et al. 2013). After the
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dissemination, they can easily spread through the environment remaining viable for
long periods of time and posing a potential health risk (Benito et al. 2020). Moreover,
some of these pathogenic parasites require a low infective dose meaning humans can

be infected with a dose as low as 10 cysts (Zacharia et al. 2018).

Cysts of protozoan parasites are removed from the wastewater by adsorbing onto the
sludge particles and settling with the sludge. Because sludge, a byproduct of
wastewater treatment, can be utilized as fertilizer or a soil conditioner, the techniques
for treating wastewater should assure that these cysts are eliminated or rendered

inactive (Benito et al. 2020).

The treatment procedures used determine the plant's efficiency and the quality of the
final effluent. Therefore, despite the treatment the effluent wastewater can still
contain parasitic protozoa (Domenech et al. 2018a). As mentioned before, protozoa
cysts have been detected in the effluent wastewater and sludge of WWTPs, however
only a little is known about wastewater treatment and how it may affect their removal
(Sroka et al. 2013). The literature results show that testing different treatment
processes to compare their capacities regarding the removal/reduction of parasitic
protozoa would be informative towards, (1) achieving a better understanding on the
survival capacity of protozoa, (2) enhancing parasitic infection risk studies, and (3)
making necessary adaptions to WWTPs according to the need of the population
(Benito et al. 2020). Figure 2.10 depicts a schematic illustration of the dissemination

pathways for protozoan parasites.

14



. - Industrial
Population Hospitals Facilifies Slaughterhouse Farm

et -
/
7

-—

ssas
wana”
sose_
LSS
oay
L
T~
wanes

s,
Land
/ farming

Soil

Fish
farms

‘ \é

source

Figure 2.10. Dissemination routes of protozoan parasites(Stalder et al. 2012)

2.3  Common types of WWTPs and their importance in the dissemination

of protozoan parasites

Common types of WWTPs include CAS, BNR, SBR, extended aeration unit with
UV disinfection (also called WWTP with the coagulation-flocculation unit and UV
disinfection throughout this study (CoFIUV)), and MBR. The processes that occur
in these WWTPs and research on how it affects the spread of protozoan parasites is

discussed in the sections below:

2.3.1 Conventional Activated Sludge (CAS)

The CAS process uses a large mass of aerobic microorganisms kept in suspension
by mixing and aeration to convert organic waste and other ingredients to gases and
cell tissue. This process often involves physical and chemical processes as well as
biological processes. Conventional treatment systems generally consist of

preliminary, primary, and secondary treatment processes. In some cases, however,

15



they can also include tertiary or even advanced treatment processes (Metcalf & Eddy
2014).

The preliminary treatment removes coarse solids from the wastewater and prepares
the wastewater for further treatment. Primary treatment removes readily settleable
solids and floating material from wastewater reducing the suspended solids content.
Biodegradable organic materials and residual suspended particles are eliminated
during secondary treatment. In this process, the removal of biodegradable organic
matter occurs via aerobic microorganisms in aerated tanks. These microorganisms
utilize biodegradable organics and produce inorganic end-product and new biomass.
Secondary sedimentation tanks are used to eliminate microorganisms from the
treated wastewater after this procedure. For sludge processing, the extracted
biological solids are referred to as biological (activated) sludge and are frequently
mixed with the primary sludge. Although they are not common, when the removal
of secondary treatment is not enough tertiary and/or advanced treatment is used to
further treat the wastewater (Metcalf & Eddy 2014). In Figure 2.11 a typical CAS

process diagram is depicted.
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Figure 2.11. Typical conventional WWTP diagram(Nathanson 2022)
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2.3.2 Biological Nutrient Removal (BNR)

Nutrients such as nitrogen and phosphorus are the primary causes of eutrophication
in surface waters. Enrichment of nitrogen and phosphorus results in algal blooms,
low dissolved oxygen, fish deaths, and depletion of desirable flora and fauna (EPA
2007). BNR systems were developed for the removal of nitrogen and phosphorus
from the wastewater to prevent eutrophication in surface waters (Metcalf & Eddy
2014). BNR systems mainly include nitrification, denitrification, and phosphorus
removal steps (Water Environment Federation 2007). In Figure 2.12, a BNR process
diagram is depicted. The nitrification process is the biological oxidation of
ammonium ions to produce nitrate and is done by nitrifying bacteria such as
Nitrosomonas and Nitrobacter. Nitrification consists of two stages, the first is the
stage where Nitrosomonas oxidizes ammonium to nitrite and the second is where
Nitrobacter oxidizes nitrite to nitrate (Tortora et al. 2016). The denitrification
process on the other hand is the process in which nitrate ions are converted to
nitrogen gas via denitrifying bacteria such as Pseudomonas (Tortora et al. 2016).
BNR processes also include enhanced biological phosphorus removal by using
organisms called phosphorus accumulating organisms (PAOs). These organisms
accumulate phosphorus and have been used to provide over 80% biological

phosphorus removal under anaerobic conditions (Metcalf & Eddy 2014).
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Figure 2.12. Typical BNR system diagram (A20)(Shiek et al. 2021).
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2.3.3 Sequencing Batch Reactor (SBR)

SBR systems are used generally in small package plants since this system consists
only of one reactor (Ghangrekar and Bengal 2014). Five different stages occur in the
same tank and these stages are called fill, react, settle, decant, and idle (Metcalf &
Eddy 2014). The reactor is filled, then aerated for a predetermined period of time.
The wastewater in the reactor is allowed to settle after the aeration cycle is finished,
and then the effluent is decanted (Ghangrekar and Bengal 2014). The idle stage is
used only in a multi-task system (Metcalf & Eddy 2014). Using a single reactor for
the processes gives an advantage to SBR process as there is no need for a return
activated sludge (RAS) (Metcalf & Eddy 2014). These systems have a relatively
small footprint and are often used when available land for a WWTP is limited (EPA
1999). An SBR process diagram is depicted in Figure 2.13.
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Figure 2.13. Typical SBR system diagram(Amini et al. 2016)
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2.34 WWTP with coagulation-flocculation and UV disinfection unit
(CoFIuV)

2.3.4.1  Coagulation-flocculation

Colloidal particles, typically having a net negative charge, are commonly found in
wastewater. The size of these particles generally ranges from 0.001 to 1 pm which
does not allow them to settle, and these particles follow the Brownian motion which
keeps them in suspension. This process aims to make these small colloidal particles
show particle growth via collision with the chemical coagulants (Metcalf & Eddy
2014). By using this process many contaminants that can be absorbed by the colloids
such as metals, toxic organic matter, and even pathogens can be removed from
wastewater (Shammas 2005). In the coagulation-flocculation process, generally, a
chemical coagulant is added to first destabilize these negatively charged colloids.
Then a flocculant is added so that the larger flocs can be formed, and these smaller
colloids can be removed from wastewater by sedimentation (Metcalf & Eddy 2014).

The typical diagram of a coagulation-flocculation unit is depicted in Figure 2.14.
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Treated
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. ~ sludge
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Figure 2.14. Typical coagulation flocculation system diagram(Ibrahim at.al. 2020).

2.34.2 UV disinfection

Ultra-violet light disinfection with the light being in photon form can inactivate

microorganisms either by causing damage to the proteins or causing damage to the
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nucleic acids (thymine dimerization) (Linden and Murphy 2017). UV light is
considered non-ionizing radiation as it has a longer wavelength and lower energy.
Therefore, the radiation is not very penetrating and UV light is considered a
disinfectant but not a sterilizing agent. The UV radiation has a wavelength of 260
nm, and this specific wavelength is absorbed by the DNA. The DNA's regular base
pairing is disrupted when this radiation absorbs by nearby thymine bases, which
cross-link to generate thymine dimers. However, this effect is only a disinfection
method as the organisms have either a light repair system or a nucleotide excision
repair system to undo these thymine dimers when specific conditions are available
(Tortora et al. 2016). The typical diagram of a UV disinfection unit and thymine

dimer formation are depicted in Figure 2.15.
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Figure 2.15. Typical UV disinfection system diagram (a) and thymine dimer formation (b)(Gross et
al. 2015)

2.35 Membrane bioreactor (MBR)

MBR process is a combined process of the biological reactor and membrane filtration
(Al-Asheh et.al. 2021). This is the process used for the removal of residual
particulate and colloidal matter including microorganisms. In this process,
wastewater is passed through porous material excluding the particles that have a size
between 0.005 to 2.0 um (Metcalf & Eddy 2014). Membrane processes include
microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis

(RO). The membrane bioreactor process combines an activated sludge system with
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usually MF or UF instead of a sedimentation tank (Metcalf & Eddy 2014). The
typical diagram of an MBR unit is depicted in Figure 2.16.
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Figure 2.16. Typical MBR system diagram(Karim and Mark 2017)
The advantages and drawbacks of MBR systems are given in Table 2.1.

Table 2.1. The advantages and drawbacks of MBR systems (Saleh & Gupta 2016)

Advantages of MBR Disadvantages of MBR

Continuous separation under mild condition Low membrane lifetime

Membrane properties can be adjusted Low selectivity and flux

Scaling up is easy Scaling up is linear

Hybrid processing is possible Concentration polarization membrane fouling

2.4 Methods for parasitic protozoan detection in the environmental samples

It is possible to evaluate the occurrence and prevalence of waterborne protozoa using
both traditional and modern molecular approaches (Skotarczak 2009). Water and
wastewater systems have been evaluated using a number of techniques based on the
amplification and comparison of rRNA sequences. These methods consist of reverse
line blotting, PCR, qPCR, terminal restriction fragment length polymorphism (t-
RFLP), denaturing gradient gel electrophoresis (DGGE), fluorescent in situ
hybridization (FISH) and reverse line blotting (RLB) (Adamska et al. 2015; Gilbride
et al. 2006). Usually, the amount of information held by the genetic locus under study
heavily influences the choice of an assay and molecular marker. When identifying

the various species within a genus, certain tests can be used to discriminate between
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isolates of the same species (genotypes), whereas others can be used for both

purposes (Skotarczak 2009).

Among the aforementioned molecular methods, DGGE is used to differentiate
amplified rRNA gene fragments, which are usually just 500 bp in length, based on
sequence variations rather than size variations. Phylogenetic composition can be
evaluated by removing and sequencing specific bands (Gilbride et al. 2006).On the
other hand, the t-RFLP experiment uses one or both fluorescently labeled primers to
tag the PCR result. Following restriction endonuclease digestion of the amplicons,
the fragments are sorted by capillary electrophoresis. An electrophoretic profile is
created as a distinctive hallmark for each microbial community after the tagged
fragments are found (Gilbride et al. 2006). Another useful technique is FISH when
analyzing samples of microbial communities. This technique can be used to assess
the abundance of each microorganism in a population. FISH has been used to create
a quantitative description of the microbial community structure in activated sludge
and wastewater because of its capacity to count specific microbial cells (Gilbride et
al. 2006). RLB technique is referred to as a reverse dot blot assay for the detection
of pathogens. It is based on the hybridization of PCR products to certain probes
immobilized on a membrane to detect variations in the amplified sequences
(Adamska et al. 2015). PCR and qPCR are also potent molecular tools in which the
gene sequence corresponding to the intended target can be amplified. qPCR has
advantages over traditional PCR in terms of practicality and allows for the real-time
monitoring of DNA amplification (Kralik et al. 2017). One other benefit of qPCR is
the ability to quantify genetic targets throughout a broad dynamic range as opposed
to the endpoint analysis of conventional PCR (Smith et al. 2009). Some benefits and

limitations of the techniques are given in Table 2.2.
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Table 2.2. Benefits and limitations of some molecular techniques used in protozoa detection
(Adamska et al. 2015; Gilbride et al. 2006)

Technique Benefits Limitations
Denaturing gradient gel Culture-independent DNA extraction and PCR
electrophoresis (DGGE) Suitable for a wide range of biases

pathogens
Terminal-restriction Culture-independent DNA extraction and PCR
fragment length Fast and semi-quantitative biases

polymorphism (t-RFLP)
Suitable for a wide range of

pathogens
Fluorescent in situ Quantitative Inactive cells cannot be
Hybridization (FISH) detected
Polymerase chain reactions Rapid detection of target Target specific primers
(PCR) pathogens
Quantitative PCR Quantitative Target specific primers
Reverse line blotting (RLB) Simultaneous detection of Not repetitive

many microorganisms Signals may be weak

For the genotyping of protozoan species, PCR and qPCR have been utilized widely
and have several advantages over traditional techniques. For waterborne protozoans,
numerous polymerase chain reaction assays have been described (Sanchez et al.
2018). The amount of information conveyed by the genetic marker being studied
determines which test should be used in most cases. Some tests can only be used to
distinguish between isolates of the same species (genotypes), whereas others can be
used to identify species within a genus. qPCR also made it possible to study the
infection's quantitative aspects with exceptional sensitivity. For instance, it is
possible to identify carrier statuses, count the number of (oo)cysts in a sample, and
study quantitative aspects of gene expression during the infection's any stages

(Skotarczak 2009).
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24.1 Polymerase chain reactions (PCR)

PCR is a simple and sensitive enzymatic assay that allows for the in vitro
amplification of small samples of DNA (Garibyan and Avashia 2013). PCR makes
use of the enzyme DNA polymerase that copies DNA molecules. High temperatures
applied in the PCR reaction to denature the DNA, therefore an isolate of the DNA
polymerase from a thermophilic hot spring bacterium (Thermophilus aquaticus) is
used during the reaction (Madigan and Martinko 2006). After denaturation with high
temperatures, each strand of DNA will serve as a template for new DNA synthesis.
Four nucleotides (ANTPs), primers that are complementary to the ends of the target
DNA strands and Tag polymerase are added to the template to start the reaction and
synthesize new strands. A diagram of PCR reactions is given in Figure 2.17.
Following agarose gel electrophoresis, the amplification products in a standard PCR
assay are typically seen with ethidium bromide or alternative, less carcinogenic dyes.
The estimated size of the PCR product determines the specificity of the assay. For
the detection of protozoa in fecal samples, PCR has been demonstrated to be a

sensitive and specific alternative (Verweij and van Lieshout 2011).
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Figure 2.17. Schematic diagram of PCR(Brittanica 2021)
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2.4.2 Quantitative polymerase chain reactions (qQPCR)

qPCR, also known as real time PCR, allows for the monitoring of DNA amplification
in real time through monitoring of fluorescence (Kralik et.al 2017). In this method,
the newly made DNA is tagged with fluorescent dye (Tortora et al. 2016) and after
each cycle, fluorescence is monitored, and the strength of the signal corresponds to
the amount of DNA amplicons present in the sample at that particular instant. (Figure
2.18). gPCR allows for the determination of the absolute quantity of the target DNA
in the sample (Kralik et.al 2017).

gPCR has been developed to allow for the detection and identification of multiple
microorganisms at the species level (Bonilla et al. 2015). This method not only

measures free DNA but also cellular DNA (Berglund et al. 2017).

The phase on which PCR is concentrated is the early exponential phase of the
amplification process, when the number of amplified products is proportional to the
concentration of template DNA. This phase is used for DNA quantification when
employing qPCR. A fluorescent detecting device is used by a real-time PCR to track
the results continuously throughout the procedure. (Fontaine and Guillot 2002).
qPCR's closed-tube format not only cuts labor time in a busy diagnostic laboratory
but also considerably lowers the possibility of contamination(s) (van Lieshout and

Roestenberg 2015).
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Figure 2.18. SYBR Green detection and melting curve example of qPCR (van der Velden et al.
2003)
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CHAPTER 3

MATERIALS AND METHODS

3.1  Types of WWTPs tested in the study

Five WWTPs with varying processes including CAS (Figure 3.1), BNR (Figure 3.2),
SBR (Figure 3.3), CoFIUV (Figure 3.4) and MBR (Figure 3.5) were used in this
study.

Figure 3.2. Picture of BNR system sampled in this study.
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Figure 3.5. Picture of MBR system sampled in this study.

Average operational parameters and influent and effluent water qualities are
presented in Table 3.1 and Table 3.2, respectively. During the study's sampling
period, all WWTPS' effluent discharge requirements complied with Turkish
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Regulation on Water Pollution Control (Republic of Turkey Environment and Urban

Ministry 2004).

3.2  Collection of samples

An amount of 1 L of water and sludge samples were taken from each WWTP in
triplicate and placed in sterilized bottles. For DNA extraction, the obtained samples
are delivered to the lab in a portable cooling box within two hours. The samples were
collected seasonally in between 2020-2021 to account for the seasonal variations
regarding protozoan removal. DNA extractions were done within 24 h of sample

collection.

3.2.1 Water samples

For the pre-treatment of water samples for later use, the method developed by
Lemarchand et. al. (2005) was selected to be used. Prior to the subsequent DNA

extraction, the samples were centrifuged at 1000 g for 16 min. and the pellets were

kept at -20°C.

3.2.2 Sludge samples

The sludge samples not used in the extraction were centrifuged at 16000 g for 15
min and the pellets were stored at -20°C until DNA extraction (Lemarchand et al.

2005).
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3.3 Total DNA extractions

The methodology for total DNA extraction is given below and the chemicals used

during the extraction method are listed in Table 3.3.

Table 3.3. Chemicals used in the extraction process

Chemicals Suppliers

Phenol Merck, Germany
Chloroform >99%, Mercdk, Germany
Sodium acetate Sigma-Aldrich, Germany
Isopropanol Merck, Germany
Ethanol Razi, Iran

Tris BDH, UAE

EDTA Sigma-Aldrich, Germany

DNA extractions were done within 24 h after sample collection by modifying the
protocol developed by Stirling and Bartlett (1996) (Figure 3.6). 500 pL of water and
sludge samples were transferred to Eppendorf tubes and were sonicated (Bandelin,
Germany) with 35% amplitude for 1 min in picked ice. To the sonicated samples 1
volume of phenol-chloroform (1:1) was added and the samples were centrifuged at
19000 g for 10 min. After centrifugation (Thermo Scientific, USA), the upper phase
was drawn and transferred to a new Eppendorf tube. The phenol-chloroform step
was repeated two times to fully purify the samples from proteins. To this upper
phase, 1/10 volume of sodium acetate and 6/10 volume of isopropanol is added, and
the samples were kept at -20°C for 10 min. The cooled samples are then centrifuged
at 19000 g for 10 min. After this 300 puL of 70% of ethanol was added to the pellets
and the samples were centrifuged again at 19000 g for 10 min. After the last
centrifugation, the ethanol was left to evaporate and the 50 uL of TE buffer was
added to the samples for storage at -20°C until further analyses. The quality and
concentration of extracted DNA were determined by nanodrop (Berthold, Germany)

and 1.5% agarose gel electrophoresis (Bio-Rad, USA) (Lee et al. 2012). Before

31



analyses the spectrophotometer (Berthold, Germany) was blanked with the TE
Buffer that was also used to store the extracted DNA. In the spectrophotometric
analyses the purity of the extracted DNA was assessed using the 260/280 nm and
260/230 nm ratios. The ratio of absorbance at 260/280 nm should be around 1.8 for
the DNA to be accepted as pure. This ratio was around 1.8 for all the samples
measured. The 260/230 nm ratio should be in the range of 2.0-2.2, and for all the
samples measured, this value was between 2.0 and 2.2. For the agarose gel
electrophoresis analyses, to be used as an electrical conducting agent and to prepare
the agarose gel, 10x TBE Buffer containing 108 g/L Tris (BDH, UAE), 55 g/L Boric
acid (BioShop, Canada) and 40 mL/L EDTA (Sigma-Aldrich, Germany) (pH 8) was
prepared and diluted to 1x. An amount of 15 g agarose /1 L 1x TBE Buffer was
prepared, and 40 mL of this solution was used to make the agarose gel and 2.5 pL.
RedSafe™ dye (INtRON Biotechnology, South Korea) was used to dye the gel (Lee
etal. 2012).
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Figure 3.6. Experimental flow of protozoan DNA extraction
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3.4  Qualitative analyses of protozoan DNA

For the qualitative analyses of protozoan parasites PCR was performed (Figure 3.8).
Specifically selected primers selected for this study and their target protozoan

parasites are depicted in  Table 3.4.

PCR optimization was done for each protozoan parasite and primer by changing the
reference temperature. PCR reactions were carried out in 25 pL reaction mixtures
consisting of 2.5 uL 10x PCR buffer (Solis BioDyne, Estonia), 2.5 pL 10x MgCl;
(Solis BioDyne, Estonia), 2mM dNTPs (New England Biolabs, USA), forward and
reverse primers, 100 ng template DNA and 0.2 pLL. Taq DNA polymerase (Solis
BioDyne, Estonia) using T100 Thermal Cycler (Bio-Rad, USA). The PCR program
contained the following steps: initial denaturation at 95°C for 3 min, 35 cycles of
denaturation at 95°C for 15 sec, annealing at annealing temperatures for 45 sec,
elongation at 72°C for 45 sec and at the end of cycles final extension at 72°C for 7

min.
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Figure 3.7. Experimental flow of PCR method used in the study

In each PCR reaction, negative controls were included. The reproducibility of the
reactions was confirmed by performing duplicate PCR reactions. The amplicons
were analyzed through 1.5% agarose gel which is stained with RedSafe (Intron,
Korea) at 90 V (Moreno et al. 2018). To be able to calculate the PCR amplicons'
molecular weight 50 bp DNA ladder (EUR X, Perfect Plus) was loaded into each

agarose gel. Lastly, the agarose gel was visualized under UV light.

The copy numbers of protozoan DNA per uL were calculated according to Whelan

et. al (2003) with the following equation (1):

Copy number of DNA _ bxc (1)
uL T L*ax1012

In equation 1, the letters a, b, ¢ and L represent the weight of kb DNA per pmol (1
kb DNA = 0.66 pg/pmol), Avogadro Number (6.022x1023/mol), the concentration

of template in pg/uL and length of template containing the target gene, respectively.
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3.5  Quantitative analyses of protozoan DNA

qPCR analyses were performed for the quantitative analyses of protozoan parasites
(Figure 3.8). Coyote Mini8 real-time PCR (Coyote Bio, Columbia) was used for the
qPCR reactions. A 20 pL reaction mixture containing 1 pL template DNA, 4 uL 5x
EvaGreen ® qPCR Master Mix, and forward and reverse primers were prepared for
the qPCR analyses. Negative controls were included in each qPCR assay to evaluate
non-specific amplifications. Lambda DNA (New England Biolabs, USA) was used
to construct the standard curves for gPCR (Guy et al. 2003). Data obtained from the
qPCR were analyzed using Mini8 Plus qPCR Software (v. 2.0.13; Coyote Bio,
Columbia). The copy numbers of target protozoan DNA were calculated based on
the standard curves constructed with Lambda DNA. The following steps were
included in the qPCR assay: initial denaturation at 95°C for 12 min, following 40
cycles of denaturation at 95°C for 15 sec, annealing for 30 sec, elongation at 72°C
for 30 sec. To generate the melting curves at the end of the cycles, the tubes were
gradually heated from 70°C to 95°C. The DNA samples were analyzed in triplicate.
The specificity of the products was checked with R? values and melting curves. For
all the standard curves R? values were higher than 0.99. The abundance of protozoan
DNA was calculated by the normalization of DNA copies to the sample volume used

(1L) to generate log DNA copies per L.
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Figure 3.8. Experimental flow of gPCR method used in the study

Data analyses and statistics

Removal efficiencies for each WWTP regarding protozoan parasites were measured
with logarithmic removal values (LRV) (Domenech et al. 2018). LRVs were

calculated by taking the logarithm of the ratio of protozoan DNA concentrations in

the influents and effluents of the WWTPs as shown in equation (2):

LRV = LOg 10 (Cinﬂuent / Cefﬂuent)

LRV of 1 represents 90% removal efficiency of target protozoa, LRV of 2 represent
99% removal efficiency and LRV of 3 represents 99.9% removal efficiency. This

pattern is followed as LRVs become greater. In their paper, Teel et.al. (2022) depicts
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according to the Nevada Administrative Code, a treatment process may be credited
with a maximum of 6- and a minimum of 1-log reduction. In addition, WHO
recommends 4-log reduction for protozoan parasites for potential agricultural reuse
(Oakley 2019). In Turkey, there are no current regulations regarding protozoan
removal, therefore, LRV 3 was selected as a baseline for efficient removal in this
study. WWTPs with LRVs lower than 3 were assumed to be not fully effective and
release protozoan parasites in the discharge points. Seasonal removal variations of
protozoan DNA were also assessed through One-way Analysis of Variance
(ANOVA) and Tukey’s Post-hoc Tests (SPSS Statics for Windows v.28,0; IBM
Corp., Armonk, NY) at a significance level of p <0.05. The limit of detection (LOD)
value for each qPCR assay was determined as the lowest measurement and LRVs
were calculated by setting samples below the LOD as 0. The limit of quantification
(LOQ) value was also determined for each qPCR analysis as the highest
measurement and the values which were below the limit of quantification but above

the limit of detection were set to the mean of these limits (Berglund et al. 2017).
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CHAPTER 4

RESULTS AND DISCUSSION

4.1  Qualitative analyses of protozoan parasites

4.1.1 Optimization of the PCR conditions and construction of standard

curves

PCR analyses were used for the qualitative analyses of protozoan parasites.
Optimization of PCR conditions was done by changing the annealing temperatures
of the primers. Template DNA used for the PCR reactions was extracted from the
samples taken. Standard curves for qPCR analyses were constructed by using
Lambda DNA (Guy et al. 2003). After the qPCR analyses, product specificities were

checked via R? values, and melting curves.

41.1.1  Optimization of G. intestinalis primer

Primer targeting the parasite G. intestinalis was chosen from the study of Guy et.al.
(2003). In that study, Lambda DNA was used as a template DNA when constructing
the standard curves in qPCR analyses. The reference annealing temperature for the
selected primer was 60°C ( Table 3.4). In the current study, Lambda DNA was also
used for the construction of standard curves. The optimum PCR condition of the
primer was investigated by varying the annealing temperature between 57°C and

60°C (Figure 4.1).
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Figure 4.1. PCR optimization of the primer for G. intestinalis with different annealing temperatures.
M, 50 bp DNA ladder from top to bottom 500, 400, 250, 100, and 50 bp, respectively (a). Standard
curve of agarose gel for molecular weight estimation (b).

Electrophoresis analysis of the PCR amplicons showed that the optimum PCR results
were obtained at 59°C (Figure 4.1). Optimized conditions for the primer were then

used in the quantitative analyses for G. intestinalis.

4.1.1.2  Optimization of E. histolytica primer

Primer targeting E. histolytica was chosen from the study conducted by Verweij et.al.
(2004). The reference annealing temperature for the selected primer was 59°C (
Table 3.4). The optimum PCR condition of the primer was investigated by varying

the annealing temperature between 57°C and 60°C (Figure 4.2).
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Figure 4.2. PCR optimization of the primer for E. histolytica with different annealing temperatures.
M, 50 bp DNA ladder from top to bottom 500, 400, 250, 100, and 50 bp, respectively (a). Standard
curve of agarose gel for molecular weight estimation (b).

Electrophoresis analysis of the PCR amplicons showed that the optimum PCR results
were obtained at 59°C (Figure 4.2). Optimized conditions for the primer were then

used in the quantitative analyses of E. histolytica.

41.1.3  Optimization of B. hominis primer

Primer that targets B. hominis parasite was chosen from the study of Moreno et.al.
(2018). The reference annealing temperature for the selected primer was 60°C (
Table 3.4). The optimum PCR condition of the primer was investigated by changing

the annealing temperature from 57°C to 60°C (Figure 4.3).
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Figure 4.3. PCR optimization of the primer for B. hominis with different annealing temperatures. M,
50 bp DNA ladder from top to bottom 500, 400, 250, 100, and 50 bp, respectively (a). Standard curve
of agarose gel for molecular weight estimation (b).

Electrophoresis analysis of the PCR amplicons showed that the optimum PCR results
were obtained at 60°C (Figure 4.3). Optimized conditions for the primer were then

used in the quantitative analyses of B. hominis.

4.1.1.4  Optimization of C. parvum primer

Primer that targets C. parvum parasite was chosen from the study of Minarovi et.al.
(2007). The reference annealing temperature for the selected primer was 60°C (
Table 3.4). The optimum PCR condition of the primer was investigated by changing

the annealing temperature from 57°C to 60°C (Figure 4.3).
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Figure 4.4. PCR optimization of the primer for C. parvum with different annealing temperatures. M,
50 bp DNA ladder from top to bottom 500, 400, 250, 100, and 50 bp, respectively (a). Standard curve
of agarose gel for molecular weight estimation (b).

Electrophoresis analysis of the PCR amplicons showed that the optimum PCR results
were obtained at 60°C (Figure 4.4). Optimized conditions for the primer were then

used in the quantitative analyses of C. parvum.

4.2  Quantitative analyses and removal of protozoan parasites

4.2.1 Quantitative analyses for G. intestinalis

After the PCR optimization, standard curve was constructed by using Lambda DNA
(Figure 4.5 to Figure 4.12). In all qPCR reactions, R? values were higher than 0.99.
The LOQ for G. intestinalis was 10.96 log DNA copy number/L. The absolute
abundances of G. intestinalis were calculated by the normalization of DNA copy

numbers to the sample volume used to generate the DNA copies per L.
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4.2.2 Quantitative analyses of E. histolytica

After the PCR optimization, standard curve was constructed by using Lambda DNA
(Figure 4.13 to Figure 4.20). In all qPCR reactions R? values were higher than 0.99.
The LOQ for E. histolytica was 11.30 log DNA copy number/L. The absolute
abundances of E. histolytica were calculated by the normalization of DNA copy

numbers to the sample volume used to generate the DNA copies per L
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4.2.3 Quantitative analyses of B. hominis

After the PCR optimization, standard curve was constructed by using Lambda DNA
(Figure 4.21 to Figure 4.28). In all qPCR reactions R? values were higher than 0.99.
The LOQ for B. hominis was 10.94 log DNA copy number/L. The absolute
abundances of B. hominis were calculated by the normalization of DNA copy

numbers to the sample volume used to generate the DNA copies per L.

63



-arnye1oduid) JI0A0 90UDSAION[] JO [ENUSIIIIP “ 1 p/(90udosatony,])p pazijewoN [eudis 10110dax ‘.1 91045 proysaiys 10 "(9) AN pue (P) ANIA0D “(9)
A4S (q) NG (B) SYD Ul sjuan[yul JIOWWNS UI SIUIWOY g JO sasATeue YD Jb a1 Jo saaImd (wopnoq) Sunow pue (s[pprur) prepuels ‘(doy) uoneoyrdury 174 9In31g

64

ou0)pIS 0T U0 PIS 0T ou0) pIs o] ou0) pIs o] ou0) pIs o]
1 6 L 1 6 L 1 6 L 1 6 L 1 6 L
TTE 6T 43 SIE SIE
. . 43 _
v'Te 0€ TTE cre €
97E Q € Q rIe Q €€ Q §TEQ
= 1266'0 = A = o - o T . -
81660 = o 8Te 3 Lo60 = 9ce fee0 = o 660 =24 £
€€ 13 8'TE SrE SEE

o
PEFIAGEE RN T REE RO W ]S

RS R EEN T

feagebdaas’

R EE]

EERER

C P ( (q (e



-oInye1oduid) J0A0 90UDSAION[J JO [ENUSIIIIP ¢ P/(90U9saI0N )P PIZI[RWION ‘[eusIs Ioy10dal ‘N I 9[040 proysary 10 () YGIN pue (p) ANII0D (9)
A4S (q) NG (B) SYD Ul spuanjul uwnine ur sjulwoy g Jo sasreue YD Jb oyl Jo soAmd (wonoq) unjow pue (d[pprur) piepuess ‘(doy) uonesyrjdwy ‘7z 2In3dig

65

! ———— ) " a 4
N7 _ _
PN \),, A rs
\ | \
, i
(]
e it . 11 1]
0D PIS 80T U0 PIS 801 U0y PIS 8o U0 PIS'80T 0D PIS 80T
11 6 L 1T 6 L 11 6 L 1T 6 L 11 6 L
81e c1e STe [43 (43
43 .
Tie [43 £s see gce
—c A A .
1L66'0 =4 rie O Q . seE Q . e a
9'CE SL66'0 =8 (943 ¥¥66'0 =4 85660 = ) €266'0 = T €€
. 123 et
R'CE
33 133 Sre 143 S'et
1 k H m} w} w}

(e (p ® (q (e



-oInye1odud) J0A0 90UDOSAION[J JO [ENUSIIIIP ¢ P/(90U9saI0N[ )P PIZI[RWION ‘[euSIs Ioy10dal ‘N I 9[040 proysary 10 () YN Pue (P) ANII0D (9)
"AgS (@) ANG (8) SV Ul sjunjjur 1o)uim Ul sjulwioy g Jo sasAjeue Ydb oy Jo soamd (wonoq) sunjouw pue (s[ppru) prepuess (doy) uoneoyrjdwy ‘€z 4 931

srmen,
R EEENEERE R

Dot iy

N

N
S \
|
|
|
|
. ' ' " w n
‘uﬂou.ﬂﬁm_mﬁud AUEOUAUHM‘MO\H ,OGDUAWLWAMO‘H AQEOQ.ﬁﬁm.wD\H AUEOUAUHM‘MO\H
ol 6 8 11 6 L 11 6 L 11 6 L 11 6 L
SrIE I€ 0¢ sTE 9zE
STE TIE Is 8T€E
_ : 133 o
ie 2 g1e @ w9 2 ee 9
£766°0 =1 6670 = . .
69660 =4 o€ L7660 =4 . ‘ € 95660 =1 see L5660 =21 et
LT 43 L3 e 9'€g

wo
treerrd tEEINBEGEREERGNODN Y

o
PEFEABEEE N A E R B DR Ry T sREROEEE

8 d 2 dadda

% 8 2 § 88 & &

.
E

£ 4 &8 & 2 & & ¢ & &
EEdIEPUBRIVERAARY

4

(e (p (o (q (e

66



-oInye1oduid) JI0A0 90UDOSAION[J JO [ENUSIIIIP ¢ P/(90U9saI0N] )P PIZI[EWION ‘[eusIs I0310dal ‘N I 9[040 proysary 10 () YGIN Pue (P) ANII0D “(9)

A4S (9) ING ‘() SYD ur syuangyur urids ur siuiwoy g Jo sasAeue YD Jb ayp Jo saamd (wonoq) Sunow pue (9fpprwr) prepuess (doy) uoneoyrduwry 7' oangig

wemn,
W oW o3 o4 o®omoMo3 W KN KU

U0 'PIS 80T ou0)'pIs 5o 2u0) PS80 2u0) 'PIS' 50T ou0) 'pISs 80T

or 6 8 or 6 8 or 6 8 or 6 8 or 6 8
0T'ee [Sy43 43 CEE £ve
ovee 33 sTe ree M.WM
09°¢e S'ee

o’ Q g€ Q 9€e Q 9re Q

08°¢e 143 LbE

166670 =X 007 99660 = A I3 7866'0 = S'ee 66660 = A 8'ee 6666'0 = Spe
0T've 33 143 143 6v¢

IEREEEEEEEES ]
58 % 4648488483

(e

67



-2Inmyeroduo)

JIOAO 9OUDISIION[J JO [BNUIIIP ‘1 p/(99udosaron]])p pazijeutioN ‘[eusdis 10)10dar ‘N 1y 91040 proysaxyy 90 “(3) a8pns SO pue (3) YN ‘(P) ANII0D (9)
A4S (q) NG (B) SYD Ul SJUIN[IJS JOWWNS UI SIUIWOY g JO sasATeue YD b a1 Jo saaInd (wopoq) Sunow pue (s[pprur) prepuels ‘(dor) uoneoygrdury "¢zt 9In3ig

et
EEREEEREEEREE!

2u0)'PIS 50T U0 pIS 501 oue) PIs 801 20D pISEoT 20D pISEoT 20D pISEoT
o1 6 3 1 6 L 1 6 L 1 6 L 1 6 L 1 6 L

€€ TTE 6T € SIE 83 (%)
€€ vTE [0}3 TIE ce € ©

S'€€ 43

7€ Q o) 7€ Q Q 7€ Q
e s 12660 = e L66°0 =4 e 8660 =<d M.mmm - €F66'0=2A s
she 81660 = 8Te (43 ’ gce e B °
bl ¢ €€ 13 8TE SPE S€E

g
(XX EEEE R TR L RN N

pidsdesanse

AR ENEREEE

IEEREREEEEEREENE
FEiigsasegaeraansas

Efageadesaddadans
I EEEEEEEEREE R L]

SRR R
L]



-2Inyeroduo)

IOAO 9OUISAION[J JO [BNUSILIIP “1p/(90uddsatony,])p pazijewtoN [eudis 19310dax ‘1Y 9[040 proysaiyy 1) (3) 93pn[s Sy pue (2) Y9N ‘(P) ANII0D (9)
A4S (q) NG ‘() SYD UI SJUSIN[FFS uwmne ur Sjuiwoy ‘g Jo sasAreur YDJb a3 Jo saamo (wonoq) sunjow pue (d[pprur) piepuess ‘(do) uonesyrdwry ‘9z 4 2In31g

2u0)'PIS 0T U0 pis'SoT U0 pisio1 U0 pIS' 80T U0 IS B0 U0 pISS0T
o1 6 8 11 6 L 1 6 L 8 6 L 11 6 L 1 6 L
€€ 8TE SIE STE 43 43
L 43 .
s'ee e 43 £t sTE 43
. Q Q . Q Q Q
ve Q 11660 = a1 ¥e Q _ 9 ] gge Q . g Q Q
g 9'Ce SL66'0 ==d [Sras ¥¥66'0=A 85660 = . €766°0 = AT €€
SPE 8'7s Y€ %3
bl S¢ 33 €€ SPE 43 S'EE

ol w0 oo
Bwonmoa syt KK KD XK K RTEE KO0 T R R BN ERKEEE W KD NNy D TR LR ERET PR E A B X EE KT RS R D NN

- . o "

= " " - ,.n -

- - .

" h e o n

3
- - “s - ™

.

- -

. = o 0
= : “ : 2 :
m i w } 3 3 w 3 w
" ~ e

3 " =] -
> "

wd - o -
s . - 0 i 0
e . ™ ﬁ 0

— o
= — o B 0 e
= - o o wn
™ an s e s e

69



IOAO 9OUIOSAION[J JO [BNUIIIP ‘1 p/(90uddsaton])p pozijewioN ‘[eusis 10110dar ‘N Iy 91940 proysaiy 10 “(3) a8pnys SO pue (3) YGIN ‘(P) ANII0D (9)
A4S (@) ANG (8) SYD Ul sjuanjjjo 1opuim Ul sjulwioy g Jo saskjeue yDdb oy jo soamo (wonoq) sunjow pue (s[ppruw) prepuess (doy) uoneoyrjdwy £z 4 931

0T

U0 PIS 30T
6

Fadpassane’

RN B

"

srpen,

now B o® oA o3 o8

S e R
\

N AT

0T

U0 PIST0T
6

69660 =z

8

St'ie
S1e
ce'1e
9'1¢
S9'Te
L'1g

(e

10D

B &

8 o

-
a4 ® o8 A

S o sty

a8 ou

-2Inmyeroduo)

[t

N, A 2
\ A
\L YT WAL
\ \\a
|
!
,
i
U0 PIS O] ou0)'pIS 30T
11 6 L 11 6
1€
TIE
v”ﬁm o
) 91 £766'0= 4
LT66'0 =2 .
43

—

%%

£ 3 8 & 2 & 3 & 3 2

(p

U0y pIS30T U0 PISTO]
1 6 L 1 6
0€ STE
1£3 cs
€ Q Q
9566'0 = (3 L5660 =0
23
23 7€
e Jenaneemes R ERRET (X R TR T
h 0
(0 (q

a aou

L

9'Ce

8Ce
€€

Tee T

vee
9'¢€€

(e

70



-oInje1odurd) I9A0 90UISAION[J JO [BNUAIIP “ I p/(90udosaron])p

pazieutioN ‘[eusis 1ouodar ‘N4Y ARAd proysaiy 45 (3) 93pnis SV pue (9) YA (P) ANII0D (0) YAS () NG (®) SVD
ur syuanpyyo Surids ur sjuiwoy g Jo sasAreue YO db ayp Jo saamos (wonoq) Sunjow pue (d[pprw) prepuess ‘(doy) uoneoyrdury ‘gz 23

TV TR . T
‘,.,, \?,\
\Oh/
il
t |
U0 PIS 'S0 U0 PIS 50T U0 PIS 80T 2u0)'pIS 80T u0) PS50 ou0)'pIs 801
o1 6 8 or 6 8 or 6 8 or 6 8 or 6 8 or 6 8
€€ 0T'ce 43 (43 CEE 1243
33 ov'ee €€ sTe ree m.wm
09°€€ 533 ) :
ve Q g o Q g Q 9€e Q 9ve Q
08°¢e 143 i
343 : - 9966'0 = 1 - i s'ee i g'ee .
el s L6660 = 00'¥€ = (3743 7866'0 =<4 66660 = A 66660 =24 8
. S¢ 0T've 13 143 143 6'vE

71



4.2.4 Quantitative analyses of C. parvum

After the PCR optimization, standard curve was constructed by using Lambda DNA
(Figure 4.29 to Figure 4.36). In all qPCR reactions R? values were higher than 0.99.
The LOQ for C. parvum was 10.91 log DNA copy number/L. The absolute
abundances of C. parvum were calculated by the normalization of DNA copy

numbers to the sample volume used to generate the DNA copies per L.
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4.3  Parasitic protozoa removal capacities of WWTPs

WWTPs’ removal capacities for four parasitic protozoa were determined by the
gPCR analyses. Raw data obtained from the qPCR analyses are given in Appendix
A. Statistical analyses for the seasonal variations in the removal capacities of

WWTPs for four protozoan parasites are given in Appendix B.

43.1 in CAS

Figure 4.37 shows the schematic diagram of the CAS system sampled in the study.
This system is made up of preliminary, primary, and secondary treatment stages.
Preliminary treatment includes screening and an aerated grit chamber to remove the
coarse solids and large particles. In the primary treatment stage, a primary
sedimentation tank is used to remove the settleable organics and inorganics.
Additionally, heavy metals and a fraction of the organic nitrogen and phosphorus
may also be removed in primary treatment. Secondary treatment consists of aeration
tanks and secondary sedimentation tanks. In this stage of the treatment process,
aerobic microorganisms metabolize remaining organics and produce new cells as
well as inorganic end-products. Then these microorganisms are separated from the
wastewater via the secondary sedimentation tank. As a result of the secondary
treatment stage, residual organics and suspended solids are removed from the
wastewater. The settled biological (activated) sludge is then combined with the
primary sludge to be sent to the sludge treatment where sludge is treated
anaerobically (Metcalf & Eddy 2014). The CAS system sampled receives
wastewater from Central Ankara and has a capacity of 765000 m>/day. The biogas
created because of the sludge treatment covers 80-85% of the energy needed by the
plant. Average system operation parameters were 3 days SRT, 12 h HRT, and 60%
RAS. Turkish Regulation on Water Pollution dictates that the effluent water
discharge of a WWTP treating domestic wastewater and serving a population over

100000 should not have more than 35 mg/L. BOD, 90 mg/L COD, 25 mg/L TSS, 10
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mg/L N, 1 mg/L P and should have pH in the range of 6 and 9 (Republic of Turkey
Environment and Urban Ministry 2004).The CAS system sampled was following the
regulation during the sampling period except for the nitrogen and phosphorus values

which were higher than the discharge standards (Table 3.1).

Wastewater

Influent (sampling Aerated Grit Chamber Primary Clarifier Aeration Tank Secandary Clarifier

o] Screening
— /// — — — —_— —p Effluent
(sampling

I point)

Return Activated Sludge

Waste Activated Sludge

Anaerobic Digester
Effluent (sampling point]
_—

Anaerchic
Digester

Figure 4.37. Schematic diagram of the CAS system tested in the study.

The CAS system sampled in this study removed protozoan parasites with LRV > 3
for B. hominis and C. parvum while the highest LRVs for E. histolytica and G.
intestinalis were 2.93 and 1.44, respectively (Figure 4.38).
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Figure 4.38. Seasonal LRVs for G. intestinalis, E. histolytica, B. hominis and C. parvum in CAS.
Error bars correspond to the standard deviation of mean values of the three measurements for three
replicates.

Significant seasonal variations were only observed for the removal efficiencies of E.

histolytica, B. hominis and C. parvum (p<0.05) ( Table 4.1).
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Table 4.1. Seasonal LRVs in CAS

LRV of CAS System
B. hominis* E. histolytica*  G. intestinalis C. parvum*
Summer 3.368 2.934 1.004 0.177
Autumn 2.405 1.384 1.443 3.376
Winter 2.030 0.352 0.340 1.810
Spring 4.257 0.888 0.337 4.353

* seasonal significance (p<0.05)

The LRVs observed in the current study with the CAS process agreed with those
observed in previous studies. Study conducted by Kistemann et.al. (2008) who
reported LRVs > 2 for G. intestinalis. In another study conducted by Tonani et.al.
(2011) CAS system shows LR Vs lower than 2 for protozoan parasites. In their study,
Ramo et.al. (2017) showed that activated sludge process shows removal only up to
2.34 LRVs for Giardia and 1.8 LRV for Cryptosporidium. Fu et.al. (2010) also
showed 1.68 LRV for Giardia and 1.52 LRV for Cryptosporidium in CAS system.
Berglund et.al. (2017) also reported that the CAS system removes protozoan

parasites with LRVs ranging from 2 to 3, never reaching 3.

Sludge treatment, however, increased the copy numbers of B. hominis in winter, E.
histolytica in winter and autumn, G. intestinalis in winter and autumn and C. parvum
in winter (Figure 4.39). Significant seasonal variations were observed for the

removal efficiencies of only E. histolytica (p<0.05) ( Table 4.2).
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Figure 4.39. Seasonal LRVs for G. intestinalis, E. histolytica, B. hominis and C. parvum in CAS
Sludge. Error bars correspond to the standard deviation of mean values of the three measurements
for three replicates.

Table 4.2. Seasonal LRVs in CAS sludge

LRV of CAS Sludge

B. hominis E. histolytica*  G. intestinalis C. parvum
Summer 0.066 3.730 0.936 3.172
Autumn 0.885 1.384 -0.944 0.330
Winter -3.035 -0.957 -0.683 -0.161
Spring 1.998 -0.050 0.137 3.811

* seasonal significance (p<0.05)
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According to Naughton (2017), an average of 1.3 LRV of protozoan parasites can be
expected from activated sludge systems. Naughton also argues that the main
mechanism of pathogen removal in the activated sludge process is the adsorption of
microorganisms onto sludge therefore the number of pathogens in sludge is enhanced
(Naughton 2017). In addition, return activated sludge (RAS) that is collected from
the bottom of the secondary sedimentation tank is introduced to the influent of the
aeration tank. The cysts of the parasites can be retained in the RAS, then can be
recycled into the aeration tank. With the cysts coming from the influent and the cysts
that are recycled to the system parasitic protozoa cysts can be accumulated in the
sludge (Naughton 2017). Certain types of protozoa such as ameba and metazoans
that are predators of flocs and some ciliated protozoa that feed on free bacteria may
also help to reduce bacteria living freely and that are in the floc form during activated

sludge systems (Figure 4.40) (Naughton 2017).

Rotifers
Protozoa Protozoa
(free-swimming ciliates) (stalked ciliates)
Y
(
Protozoa Protozoa
(amoebas) ¥~ (zooflagellates)
Particulate Bacteria
organic matter
A
Dissolved

organic matter

Figure 4.40. Food web of protozoa in CAS systems (Naughton 2017)

The highest removal rates were documented in summer and spring. Major pathogen
removal and inactivation mechanisms in CAS were identified as; environmental
factors, operational factors, microbiological factors, physico-chemical factors and

adsorption onto sludge (Figure 4.41) (Naughton 2017).
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Environmental Factors Operational Factors

(Pathogen concentrations, Seasonality, (Hydraulic/Solids Retention
Dilution from rain events, Temperature) Time, Design, flow)
1 Primary effluent (liquid) Treated effluent
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—
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@“) (predation)
L

Adsorption to
Sludge
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Iﬂ ﬁ Suspended Solids, etc.
Air —r : )

Returned Activated Sludge s =gy Excess Sludge

Figure 4.41. Major pathogen removal and inactivation mechanisms in CAS (Naughton 2017)

In one of the mechanisms, pathogens firstly adsorb onto the sludge in the aeration
stage and then they are removed by sedimentation in the second stage of the activated
sludge systems (Haramoto et al. 2007). Other parameters affecting pathogen removal
in activated sludge systems are design and operational parameters such as hydraulic
retention time (HRT), solids retention time (SRT), flow rate, and reactor
configuration. In their paper, Fu et.al. (2010) suggest that a longer RT and higher
sludge concentration increase the removal efficiency of WWTPs regarding
pathogens (Fu et al. 2010). High RT is also suggested by Naughton et.al. (2017) as
the main mechanism when removing protozoan cysts. Environmental factors such as
ambient temperature and rainfall are also important factors effecting the pathogen
removal in conventional activated sludge systems. King et.al. (2005) reported higher
inactivation of cysts at greater temperatures when pathogens are exposed to higher
UV radiation from sunlight. Rainy seasons and snowfall may dilute the wastewater
and therefore pathogens in the wastewater, decreasing the removal efficiency of the
WWTPs toward pathogens (Lucas et al. 2014). The study area receives rainfall
throughout the year and snowfall in winters therefore this may be the reason the CAS

system sampled in this study showed lower LRVs in autumn and winter seasons.
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Dumontet et.al. (2001) reported no reduction of the protozoan cysts in sludge
treatment. They also reported that cysts of these parasites can survive in sludge
amended soil for at least 30 days. It has been shown that with thermophilic
temperatures greater reduction of pathogens is reachable while with mesophilic
temperatures it is less possible to achieve reduction (Protozoan Parasites in Sewage
Sludge 2006). Lesser reduction in some seasons during sludge treatment might be
caused by the mesophilic conditions that the anaerobic sludge treatment tank
sampled in this study works under. Additionally, as adsorption to sludge is one of
the main mechanisms for the removal of pathogens in activated sludge process,
protozoan parasites were thought to be enriched due to adsorption as also indicated

by Naughton et. al. (2017).

43.2 in BNR

A diagram of the BNR system having A?0 configuration sampled in this study is
given in Figure 4.42. A?0 system includes three parts: nitrification, denitrification,
and phosphorus removal happening in consecutive anaerobic, anoxic, and aerobic
tanks. Nitrification consists of two stages, the first is the stage where Nitrosomonas
oxidizes ammonium to nitrite and the second is where Nitrobacter oxidizes nitrite to
nitrate (Tortora et al. 2016). The denitrification process on the other hand is the
process in which nitrate ions are converted to nitrogen gas via denitrifying
heterotrophic bacteria such as Pseudomonas (Tortora et al. 2016). The phosphorus
removal in this process occurs in two stages. Firstly, under anaerobic conditions,
Acinetobacter takes up organic matter and releases phosphorus and secondly, in the
aerobic zone newly produced phosphorus accumulating organisms (PAOs) take up
this previously released phosphorus. Phosphorus is accumulated in sludge and
removed in the sedimentation stage with the sludge (Sathasivan n.d.). Throughout
this study, the average system operation parameters of the BNR system sampled
were 28 h HRT, 16-day SRT, and 85% RAS. The BNR system tested serves a village
located in Ankara with a capacity of 41818 m®/d. Turkish Regulation on Water

88



Pollution dictates that the effluent water discharge of a WWTP treating domestic
wastewater and serving a population between 10000-100000 should not have more
than 45 mg/L BOD, 100 mg/L COD, 30 mg/L TSS and should have pH in the range
of 6 and 9 (Republic of Turkey Environment and Urban Ministry 2004). The BNR
system tested in this study was following the regulation during the sampling period

(Table 3.1).

gerobicTan i erobic Tan
Wastewater Aerated Grit Chamber Final Clarifier
Influent
(sampling paint) ///

Effluent
(sampling point)
Return Activated Sludge

Figure 4.42. Schematic diagram of the BNR system tested in the study.

Wide-ranging LRVs up to 5 and 4 were observed for the removal of C. parvum and
B. hominis in BNR process, respectively. The highest LRV 5 was recorded in
summer for C. parvum. The seasonal change was only found to be significant for the
removal efficiencies of B. hominis (p<0.05). BNR process displayed poor removal
efficiency for E. histolytica and G. intestinalis (LRV often < 1) (Figure 4.43).
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Figure 4.43.Seasonal LRVs for G. intestinalis, E. histolytica, B. hominis and C. parvum in BNR.
Error bars correspond to the standard deviation of mean values of the three measurements for three
replicates.

Table 4.3. Seasonal LRVs in BNR

LRV of BNR System

B. hominis* E. histolytica  G. intestinalis  C. parvum

Summer 2.283 0.851 0.246 5.025
Autumn 1.055 0.298 0.583 1.331
Winter 3.091 0.421 0.382 1.754
Spring 4.104 1.354 0.146 0.792

* seasonal significance (p<0.05)
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Fu et.al. (2010) showed in their study that the BNR system removes Giardia with an
LRYV value of 2.04. In their study, Caccio et.al. (2003) reported that in these systems
protozoan parasites are removed up to 1.23 LRV. A study conducted by Wang et.al.
(2021) on the removal efficiencies of pathogens in different wastewater treatment
systems. In this study, BNR (A?0) system shows a range of LRVs from 1.3 to 1.7
for protozoan parasites (Wang et al. 2021). Another study was conducted by Wen
et.al. (2009) on the fate of pathogens in activated sludge plants including BNR
systems. BNR system removes an average of 2.41 LRV for Cryptosporidium and
2.49 LRV for Giardia.

In the current study, the BNR system showed LRVs < 2 for E. histolytica and G.
intestinalis and the seasonal changes of LRVs were statistically significant for only
B. hominis (p < 0.05) ( Table 4.3). HRT, SRT, ambient temperature, and
flow rate are some important parameters that can affect the removal rates of
pathogens in biological nutrient removal systems (Naughton 2017). Longer HRT is
recommended for pathogen predation, natural decay, and inactivation. In addition to
that, longer SRT is also recommended for the pathogens to be able to adsorb onto
the sludge (Naughton 2017). The sizes of protozoan parasites are in various ranges,
so their tendency to attach to solid particles may differ affecting the removal rates in
the BNR process (Wen et al. 2009). The size of E. histolytica cysts ranges from 12-
15 pum, for C. parvum 4 to 5 um and that of G. intestinalis ranges from 11 to 14 um
while for B. hominis this range is wider from 5 to 40 um (CDC). Protozoa that have
relatively smaller size and lower specific gravity of may lead to a lower settling
velocity therefore a need for a higher retention time (Wen et al. 2009). This may be
the reason the BNR system sampled in this study showed lower LRVs for some

protozoa.

4.3.3 in SBR

The diagram of the SBR system sample in this study is given in Figure 4.44. This

system consists of five different stages occurring in a single reactor which are fill,
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react, settle, draw and idle. Treatment process starts with the fill phase when the
reactor is filled with wastewater and then the reaction phase follows. In this phase
both aeration and agitation are applied. Then comes the settle stage in which the
agitation is stopped are sludge is left to settle. In the end, effluent is discharged to
the receiving bodies in the draw phase. Once the draw phase is finished the reactor
is filled again for another cycle. The idle stage is used only in a multi-task system
(Metcalf & Eddy 2014). Even small changes in the concentrations or flow rate can
affect the microbial growth and effluent quality of the SBR process (Yoo et al. 2004).
The SBR sampled in this study was operated with 8 h HRT during this study. The
SBR system treats wastewater coming from a village in Ankara with a capacity of
3000 m?/d. Turkish Regulation on Water Pollution dictates that the effluent water
discharge of a WWTP treating domestic wastewater and serving a population
between 10000-100000 should not have more than 45 mg/L BOD, 100 mg/L COD,
30 mg/L TSS and should have pH in the range of 6 and 9 (Republic of Turkey
Environment and Urban Ministry 2004). The SBR system tested in this study was
following the regulation during the sampling period (Table 3.1)

Wastewater Influent  Screening Equalization Basin

[sampling point)

T I

Fill

i
EBN =/

Effluent
[sampling point)

—

Draw Settle

Figure 4.44 Schematic diagram of the SBR system tested in the study.
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LRV > 3 was achievable for B. hominis in summer and C. parvum in spring in the
SBR process. In the rest of the season for B. hominis along with in all seasons for E.
histolytica, C. parvum and G. intestinalis, the SBR process displayed very poor
removal efficiency with LRVs often < 1-2 (Figure 4.45). Seasonal variations were
statistically significant for the removal of all the protozoan parasites except C.
parvum (p < 0.05). A study was conducted by Supha et.al. (2015) on the long-term
exposure of protozoan communities to TiO2 in an SBR reactor. According to this
research, the number of protozoan communities shows LRV 1 in the addition of TiO>

to the SBR reactor.
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Figure 4.45. Seasonal LRVs for G. intestinalis, E. histolytica, B. hominis and C. parvum in SBR.
Error bars correspond to the standard deviation of mean values of the three measurements for three
replicates.

Table 4.4. Seasonal LRVs in SBR

LRV of SBR System

B. hominis* E. histolytica*  G. intestinalis*  C. parvum

Summer 11.676 1.906 2.297 1.216
Autumn 0.555 0.650 0.280 1.311
Winter 0.179 0.546 2.698 2.675
Spring 0.887 1.551 0.603 3.421

* seasonal significance (p<0.05)
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SBR performance depends on several parameters including characteristics of
wastewater, cycle time, aeration rate, contact time, temperature, and SRT (Aziz et
al. 2013), and the entire process uses a single basin instead of multiple basins due to
lower total suspended solid values are obtained consistently the use of a separate
clarifier is eliminated. This might explain the lower removal efficiencies of SBR for

protozoan parasites.

434 in CoFlIUV

The Figure 4.46 depicts the diagram of CoFIUV system sampled in this study. The
coagulation flocculation unit aims to enhance the separation of particles that cannot
be separated only by sedimentation and filtration. In this process, colloidal particles
are brought together to form larger sized particles that can be more easily removed
in the downstream processes (Shammas 2005). In this process, generally, a chemical
coagulant is added to first destabilize these negatively charged colloids. Then a
flocculant is added so that the larger flocs can be formed, and these smaller colloids
can be removed from wastewater by sedimentation (Metcalf & Eddy 2014). UV
disinfection, on the other hand, is used for the inactivation or destruction of
microorganisms. Ultra-violet light when absorbed by the microorganisms can cause
damage to the proteins or to the nucleic acids (thymine dimerization) (Linden and
Murphy 2017). UV light i1s considered non-ionizing radiation as it has a longer
wavelength and lower energy. When this radiation is absorbed by the DNA, adjacent
thymine bases become cross-linked which forms a thymine dimer disrupting the
normal base pairing of the DNA (Tortora et al. 2016). During this study the
operational parameters of the CoFIUV system were 27 h HRT, 30day SRT, %100
RAS. The CoFIUV system tested in this study serves an Organized Industrial Zone
located in Ankara. Turkish Regulation on Water Pollution dictates that the effluent
water discharge of a WWTP treating industrial wastewater should not have more
than 400 mg/L COD, 200 mg/L TSS and should have pH in the range of 6 and 9
(Republic of Turkey Environment and Urban Ministry 2004). The CoFIUV system
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tested in this study was following the regulation during the sampling period (Table
3.1).

Coagulation Tank Flocculation Tank

V i -
influent Aerated Grit Chamber Equalization Basin Final Clarifier

Screening
(sampling poirt)
— —_— —_—
Effluent (sampling
point)
_—

—_—

UV Disinfection

Figure 4.46. Schematic diagram of the CoFIUV system tested in the study.

The removal of E. histolytica with LRV > 3 was only obtained mainly in summertime
in the CoFIUV process. Rest of the seasons for E. histolytica and in all seasons for
B. hominis, C. parvum and G. intestinalis, the LRV was less than 3. Seasonal
variations were significant for the removal efficiencies of E. histolytica and B.
hominis (p<0.05) (Figure 4.47). In the coagulation stage since the protozoan cysts
are naturally electronegative, precipitate enmeshment metal hydroxides may assure
their reduction to more than LRV 2 (Bouzid et al. 2008). In their study, Fewtrell and
Bartram (2001) reported that coagulation flocculation systems where ferric
coagulants are used removes protozoan pathogen 1-2 LRVs. According to the study
conducted by Chowdhury et al. (2022) coagulation-flocculation along with
secondary sedimentation also leads LRV 2-3 for E. histolytica. Hachich et.al. (2013)
found that coagulation with ferric chloride removes G. intestinalis with 2.26 LRV.

Betancourt et al. (2019) reported up to 3.41 LRV for C. parvum.

Previous study conducted by Neto et.al. (2006) showed that UV disinfection is only
effective up to 1.96 LRV for G. intestinalis and 2.01 LRV for C. parvum. Linden
et.al. (2017) however reported 2-4 LRVs for protozoan parasites in UV disinfection
unit. A study was conducted by Rodriguez-Manzano et.al. (2012) on standard and
new fecal indicators and pathogens in sewage treatment plants, microbiological
parameters for improving the control of reclaimed water. According to this study,
UV light shows 0.34 and 0.90 LRV for Cryptosporidium and Giardia, respectively.
Although these removals are possible with UV light in the same study trophozoites
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of these species are still found in the intestines of one Mouse providing evidence that

the inactivation of cysts was not complete (Neto et al. 2006).
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Figure 4.47. Seasonal LRVs for G. intestinalis, E. histolytica, B. hominis and C. parvum in
CoF1UV. Error bars correspond to the standard deviation of mean values of the three measurements
for three replicates.
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Table 4.5. Seasonal LRV in CoFIUV

LRV of CoFIUV System

B. hominis*  E. histolytica*  G. intestinalis C. parvum

Summer 2.410 11.035 0.166 2.508
Autumn 0.454 1.032 0.684 1.049
Winter 1.309 2.345 2.915 7.734
Spring 0.923 2.938 1.695 0.218

* seasonal significance (p<0.05)

Effective coagulation relies on accurate dosing and mixing of often highly variable
influent loads and effective, well-controlled sludge removal. UV doses of 30 mJ/cm?
is recorded as the best dose for pathogen inactivation. A lower dose of 15 mJ/cm?
UV is applied in the current study might explain the lower LR Vs for B. hominis, C.
parvum and G. intestinalis. Considering the results of these previous studies, neither
coagulation nor UV disinfection can remove ARGs as much as when they used in

combination.

4.3.5 in MBR

The Figure 4.48 shows the schematic diagram of the MBR system sampled in this
study. MBR systems are similar to activated sludge systems however they employ a
micro- or ultra-filtration unit instead of secondary sedimentation tank for the removal
of biomass. Some pathogen removal is achieved during the biological treatment
however a much greater reduction is achieved during the filtration process (Verbyla
and Rousselot 2018). Most MBR systems utilize microfiltration with 0.1 to 0.4 pm
pore size or ultrafiltration with pore sizes ranging from 0.01 to 0.04 um (Verbyla
and Rousselot 2018). In MBR systems, continuous generation of new sludge and

consumption of organic materials with decay in sludge mass occurs at the same time.
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Therefore, a 44% reduction in sludge production is estimated in MBR systems
comparing to CAS (Radjenovic et al. 2008). MBR system sampled was operated
with 18 h HRT during this study. This system treats municipal wastewater collected
from a university campus with daily capacity of 15000 m?/d and has a total 540 m?
membrane surface area and with membrane pore sizes of 0.038 pum. Turkish
Regulation on Water Pollution dictates that the effluent water discharge of a WWTP
treating domestic wastewater and serving to a population between 84-2000 should
not have more than 45 mg/L BOD, 120 mg/L COD and should have pH in the range
of 6 and 9 (Republic of Turkey Environment and Urban Ministry 2004). The MBR
system tested in this study was following the regulation during the sampling period

(Table 3.1).

Aeration Tank Membrane

Wastewater Influent
(sampling point) Effluent {sampling point)

—_—

Figure 4.48. Schematic diagram of the MBR system tested in the study.

LRV > 3 was achievable for B. hominis for all seasons and for C. parvum in autumn
and winter in the MBR process. This efficiency was only obtained in summertime
for E. histolytica and the MBR system was showed LRV < 3 for G. intestinalis in all
seasons. Seasonal changes were only significant for the removal efficiencies of B.

hominis (p<0.05) (Figure 4.49).
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Figure 4.49. Seasonal LRVs for B. hominis, E. histolytica, and G. intestinalis in MBR. Error bars
correspond to the standard deviation of mean values of the three measurements for three replicates.

Table 4.6. Seasonal LRVs in MBR

LRV of MBR System

B. hominis*  E. histolytica  G. intestinalis  C. parvum

Summer 14.852 7.900 1.174 2.275
Autumn 5.337 0.397 1.608 5.158
Winter 5.057 1.352 0.432 6.210
Spring 4.458 0.702 0.100 2.769

* seasonal significance (p<0.05)
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A study was conducted by Fu et.al. (2010) on monitoring and evaluation of the
removal of pathogens at municipal wastewater treatment plants. In this study, MBR
shows LR Vs higher than 1.84 for Cryptosporidium and higher than 2.40 for Giardia
(Fu et al. 2010). With membrane technologies, Ben Ayed et al. (2017) report 3 to 4
LRVs for Entamoeba spp..

Protozoan cysts are significantly larger than the pores of the membrane filters,
therefore efficient removal is expected according to Hai et.al. (2014). Even though
the MBR system sampled in the current study showed high LRVs especially for B.
hominis, the protozoan parasites were still detected up to 10° copy number/L in the
effluent. Major pathogen removal mechanisms in MBR systems are size exclusion
enhanced by the biological cake layer forming on the membrane (Verbyla and

Rousselot 2018) (Figure 4.50).

Predation or Enzymatic
Breakdown in the Mixed
Liquor or in the Cake Layer

Treated effluent (liquid)

g

Mixed liquor and return sludge
Size Exclusion

3
and Retention by

the Membrane or pe,,-odicl

the Cake Layer sludge

removal

Figure 4.50. Major factors affecting pathogen removal in membrane bioreactors. (Verbyla and
Rousselot 2018)

SRT, HRT, membrane integrity, variations in feed water and the extent of membrane
fouling are also dome important factors affecting pathogen removal in MBR systems
(Sidhu et al. 2015). MBR reactors maintain higher mixed liquor suspended solids
(MLSS) compared to a CAS system therefore biomass properties and membrane
fouling in an MBR system is highly affected by SRT. Since with longer SRTs higher
biomass concentration in an MBR can be accomplished, longer SRT rises the
treatment efficiency. Consequently, the change in the SRT may affect the removal

rates of pathogens. However, high MLSS can accelerate the fouling of the membrane
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by rapid deposition of sludge particles onto the membrane surface (Han et al. 2005).
This might be the possible explanation of low LRVs obtained for E. histolytica and
G. intestinalis in MBR systems in the current study.

4.4  Removal of protozoa in literature

A summary of selected parasitic protozoa LRVs in wastewater treatment plants

observed in literature is given in Table 4.7.

Table 4.7. Removal of studied protozoa in literature

CAS [BNR [SBR  [CoFIUV MBR  |Reference
1.36 (Tonani et al., 2011)
2.34 (Ramo et al., 2017)
168 | 2.04 24 |(Fuetal, 2010)
0.62-2.5 (Berglund et al.. 2017)
1.23 (Cacci et al., 2003)
2.49 (Wen et al., 2009)
13-17 (Wang et al, 2021)
1.0 (Supha et al., 2015)
1.0-2.0 (Fewtrell & Bartram, 2001)
2.26 (Chowdhury et al., 2022)
1.96 (Neto et al., 2006)
2.0-4.0 (Linden & Murphy, 2017)
0.90 (Rodriguez-Manzano et al., 2012)
0.23-2.1 (Berglund et al., 2017)
13-17 (Wang et al., 2021)
1.0 (Supha et al., 2015)
E. histolytica 1.0-2.0 (Fewtrell & Bartram, 2001)
2.0-3.0 (Chowdhury et al., 2022)
2.0-4.0 (Linden & Murphy, 2017)
3.0-4.0 |(ben Aved & Sabbahi, 2017)
13-17 (Wang et al, 2021)
1.0 (Supha et al., 2015)
1.0-2.0 (Fewtrell & Bartram, 2001)
2.0-4.0 (Linden & Murphy, 2017)
1.8 (Ramo et al, 2017)
1.52 1.84 |(Fuetal. 2010)
13-1.7 (Wang et al., 2021)
2.41 (Wen et al., 2009)
1.0 (Supha et al., 2015)
1.0-2.0 (Fewtrell & Bartram, 2001)
3.41 (Chowdhury et al., 2022)
2.01 (Neto et al., 2006)
2.0-4.0 (Linden & Murphy, 2017)
0.34 (Rodriguez-Manzano et al., 2012)
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

51 Conclusion

In this study, common types of WWTPs namely, CAS, BNR, SBR, WWTP with
coagulation-flocculation and UV disinfection units and MBR were investigated with
respect to their seasonal removal capacities for 4 protozoan parasites including G.
intestinalis, E. histolytica, B. hominis and C. parvum that are causative agents of
commonly seen gastrointestinal diseases giardiasis, amebiasis, blastocytosis and
cryptosporidiosis, respectively. Removal of parasitic protozoa in WWTPs was

highly affected by the process and the season as summarized in the below given

in Table 5.1.

Table 5.1. LRV for protozoan parasites

LRV for G. intestinalis
CAs BNR SBR* CoFIUV MBR
Sludge Effluent
Summer 0.94 1.00 0.25 2.30 0.17 1.17
Autumn -0.94 1.44 0.58 0.28 0.68 1.61
Winter -0.68 0.34 0.38 2.70 292 0.43
Spring 0.14 0.34 0.15 0.60 1.70 0.10
LRV for E. histolytica
sy BNR SBR* CoFIUV* MBR
Sludge Effluent
Summer 3.73 2.93 0.85 1.91 11.04 7.90
Autumn 1.38 1.38 0.30 0.65 1.03
Winter -0.96 0.35 0.42 0.55 235 5
Spring -0.05 0.89 1.35 1.55 2.94 0
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Table 5.1. cont’d

LRV for B. hominis
SaE BNR* SBR* [ CoFIUV* | MBR*
Sludge | Effluent
Summer 0.06 337 2.28 11.68 241 14.85
Autumn 0.89 241 1.06 0.56 045 3.34
Winter -3.04 2.03 3.09 0.18 1.31 3.06
Spring 2.00 426 4.10 0.89 0.92 446
LRV for C. parvum
SARS BNR SBR CoFIUV MBR
Sludge | Effluent i i
Summer 3.17 0.18 5.03 122 231 2.28
Autumn 0.33 3.38 1.33 131 1.05 5.16
Winter -0.16 1.81 1.75 2.68 1.73 6.21
Spring 3.81 433 0.79 3.42 0.22 2.77

*Seasonal significance (p<0.03)

This study pointed out that:

e InCAS, LRVs 1-2 were reachable for all protozoa. LRVs > 3 were reachable
for B. hominis and C. parvum. Seasonal changes were significant for E.
histolytica, B. hominis and C. parvum (p<0.05).

e In BNR, LRVs 1-2 were reachable for all protozoa except for G. intestinalis.
LRVs > 3 were reachable for B. hominis and C. parvum. Seasonal changes
were only significant for B. hominis (p<0.05).

e In SBR, LRVs 1-2 were reachable for all protozoa except for B. hominis.
LRVs > 3 were reachable for B. hominis and C. parvum. Seasonal changes
were significant for G. intestinalis, E. histolytica, and B. hominis (p<0.05).

e In CoFIUV, LRVs 1-2 were reachable for all protozoa. LRVs > 3 were
reachable E. histolytica and C. parvum. Seasonal changes were significant
for E. histolytica and B. hominis (p<0.05).

e In MBR, LRVs 1-2 were reachable for all protozoa. LRVs > 3 were reachable
for all protozoa except for G. intestinalis. Seasonal changes were significant
for only B. hominis (p<0.05).

e Sludge in the CAS increased the amount of G. intestinalis in autumn and

winter, E. histolytica in winter and spring, B. hominis and C. parvum in
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winter. Sludge treatment reached LRVs > 3 for only E. histolytica and C.

parvum in summer for both and spring for only C. parvum.

Regardless of the process used in the treatment plants, it was observed that the
removal efficiencies for G. intestinalis and E. histolytica were often lower than LRV
3. In most of the seasons removals efficiencies for these protozoa were observed to
be around LRVs 1-2. Therefore, for especially G. intestinalis and E. histolytica,
dissemination from the WWTPs can be considered as a significant threat to public
health. Because of these results, discharge points of WWTPs should be monitored in

terms of parasitic protozoa.

5.2  Future prospects and recommendations

1. Each unit process of WWTPs should be investigated in terms of their
individual protozoa removal capacities.

2. Possible modifications on WWTP processes with the high protozoan parasite
removal capacity should be investigated for the complete removal of
parasites.

3. Installations of the high parasite removal capacity procedures into the other
types of WWTPs should also be assessed.

4. Economic feasibility should be considered when proposing changes to the
current WWTPs.

5. Regulation on protozoa discharge standard for each WWTP should be
considered for public health.

Dissemination of protozoa, especially G. intestinalis and E. histolytica, from
WWTPs raises a public health concern. The reuse of wastewater may be taken into
consideration provided that an effluent irrigation scheme is built and managed.
Irrigating crops, fruit, and vegetables, especially those intended for human
consumption, using treated wastewater require special caution. Human exposure to

biological pollution, including microorganisms like protozoa as well as the potential

105



for disease transmission are two main issues with the reuse. Since biological
pollution is not typically eliminated by conventional secondary wastewater

treatment, effluents of these WWTPs should be monitored and regulated.
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B. Statistical analyses of the qPCR results

Table B.1. Seasonal variations for the removal of G. intestinalis in CAS

Mean 95% Confidence Interval

Difference Lower Upper

(I) seasons (I-1) Std. Error Sig. Bound Bound
Autumn Spring 39.0973 26.73886 0.500 -46.5299 124.7246
Summer 19.5437 26.73886 0.882 -66.0836 105.1709
Winter 32.5420 26.73886 0.634 -53.0853 118.1693

Spring Autumn -39.0973 26.73886 0.500 -124.7246 46.5299
Summer -19.5537 26.73886 0.882 -105.1809 66.0736

Winter -6.5553 26.73886 0.994 -92.1826 79.0719

Summer Autumn -19.5437 26.73886 0.882 -105.1709 66.0836
Spring 19.5537 26.73886 0.882 -66.0736 105.1809

Winter 12.9983 26.73886 0.960 -72.6289 98.6256

Winter Autumn -32.5420 26.73886 0.634 -118.1693 53.0853
Spring 6.5553 26.73886 0.994 -79.0719 92.1826

Summer -12.9983 26.73886 0.960 -98.6256 72.6289

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 1072.450. Highlights show significant difference at the
0.05 level. std, standard: sig, significance.
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Table B.2. Seasonal variations for the removal of G. intestinalis in CAS Sludge

Mean 95% Confidence Interval
I Difference

seasons (I-1) Std. Error Sig. Lower Bound  Upper Bound

Autumn  Spring -7508.2930 5312.79345 0.526  -24521.7278 9505.1418
Summer -7504.1590 5312.79345 0.526  -24517.5938 9509.2758
Winter -7181.9267 5312.79345 0.559  -24195.3614 9831.5081

Spring  Autumn  7508.2930 5312.79345 0.526 -9505.1418 24521.7278
Summer 4.1340 5312.79345 1.000  -17009.3008 17017.5688
Winter 326.3663 5312.79345 1.000  -16687.0684 17339.8011

Summer Autumn  7504.1590 5312.79345 0.526 -9509.2758 24517.5938
Spring -4.1340 5312.79345 1.000  -17017.5688 17009.3008
Winter 322.2323 5312.79345 1.000  -16691.2024 17335.6671

Winter  Autumn  7181.9267 5312.79345 0.559 -9831.5081 24195.3614
Spring -326.3663 5312.79345 1.000  -17339.8011 16687.0684
Summer  -322.2323 5312.79345 1.000  -17335.6671 16691.2024

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term 1s Mean Square (Error) = 42228661.398. Highlights show significant difference at

the 0.05 level. std, standard: sig, significance.
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Table B.3. Seasonal variations for the removal of G. intestinalis in BNR

Mean 95% Confidence Interval

Difference Lower Upper

() seasons (I-n Std. Error Sig. Bound Bound
Autumn Spring 35.7460 21.12142 0.386 -31.8922 103.3842
Summer 22.0920 21.12142 0.729 -45.5462 89.7302

Winter 9.8710 21.12142 0.964 -57.7672 77.5092

Spring Autumn -35.7460 21.12142 0.386 -103.3842 31.8922
Summer -13.6540 21.12142 0.914 -81.2922 53.9842

Winter -25.8750 21.12142 0.630 -93.5132 41.7632

Summer Autumn -22.0920 21.12142 0.729 -89.7302 45.5462
Spring 13.6540 21.12142 0.914 -53.9842 81.2922

Winter -12.2210 21.12142 0.936 -79.8592 55.4172

Winter Autumn -9.8710 21.12142 0.964 -77.5092 57.7672
Spring 25.8750 21.12142 0.630 -41.7632 93.5132

Summer 12.2210 21.12142 0.936 -55.4172 79.8592

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 669.171. Highlights show significant difference at the
0.05 level. std, standard; sig, significance.
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Table B.4. Seasonal variations for the removal of G. intestinalis in SBR

Mean 95% Confidence Interval
Difference Lower Upper
(I) seasons (I-1) Std. Error Sig. Bound Bound
Autumn Spring -21.5360 9.69448 0.197 -52.5811 9.5091
Summer -50.6673% 9.69448 0.004 -81.7125 -19.6222
Winter -50.5117% 9.69448 0.004 -81.5568 -19.4665
Spring Autumn 21.5360 9.69448 0.197 -9.5091 52.5811
Summer -29.1313 9.69448 0.066 -60.1765 1.9138
Winter -28.9757 9.69448 0.068 -60.0208 2.0695
Summer Autumn 50.6673* 9.69448 0.004 19.6222 81.7125
Spring 29.1313 9.69448 0.066 -1.9138 60.1765
Winter 0.1557 9.69448 1.000 -30.8895 31.2008
Winter Autumn 50.5117* 9.69448 0.004 19.4665 81.5568
Spring 28.9757 9.69448 0.068 -2.0695 60.0208
Summer -0.1557 9.69448 1.000 -31.2008 30.8895

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term 1s Mean Square (Error) = 140.974. Highlights show significant difference at the
0.05 level. std, standard: sig, significance.
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Table B.5. Seasonal variations for the removal of G. intestinalis in CoFIUV

Mean 95% Confidence Interval
Difference Lower Upper
(I) seasons (I-1) Std. Error Sig. Bound Bound
Autumn Spring -26.4047 23.45655 0.685 -101.5208 48.7115
Summer 34.0523 23.45655 0.505 -41.0638 109.1685
Winter -12.1873 23.45655 0.952 -87.3035 62.9288
Spring Autumn 26.4047 23.45655 0.685 -48.7115 101.5208
Summer 60.4570 23.45655 0.121 -14.6591 135.5731
Winter 14.2173 23.45655 0.927 -60.8988 89.3335
Summer Autumn -34.0523 23.45655 0.505 -109.1685 41.0638
Spring -60.4570 23.45655 0.121 -135.5731 14.6591
Winter -46.2397 23.45655 0.274 -121.3558 28.8765
Winter Autumn 12.1873 23.45655 0.952 -62.9288 87.3035
Spring -14.2173 23.45655 0.927 -89.3335 60.8988
Summer 46.2397 23.45655 0274 -28.8765 121.3558

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term 1s Mean Square (Error) = 825.314. Highlights show significant difference at the
0.05 level. std, standard: sig, significance.
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Table B.6. Seasonal variations for the removal of G. intestinalis in MBR

Mean 95% Confidence Interval

Difference Lower Upper

(I) seasons (I-1) Std. Error Sig. Bound Bound
Autumn Spring 74.8013* 8.68271 0.000 46.9963 102.6064
Summer 10.7970 8.68271 0.619 -17.0081 38.6021

Winter 34.8277* 8.68271 0.016 7.0226 62.6327
Spring Autumn -74.8013* 8.68271 0.000 -102.6064 -46.9963
Summer -64.0043* 8.68271 0.000 -91.8094 -36.1993
Winter -39.9737* 8.68271 0.008 -67.7787 -12.1686

Summer Autumn -10.7970 8.68271 0.619 -38.6021 17.0081
Spring 64.0043% 8.68271 0.000 36.1993 91.8094

Winter 24.0307 8.68271 0.092 -3.7744 51.8357

Winter Autumn -34.8277* 8.68271 0.016 -62.6327 -7.0226
Spring 39.9737* 8.68271 0.008 12.1686 67.7787

Summer -24.0307 8.68271 0.092 -51.8357 3.7744

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 113.084. Highlights show significant difference at the
0.05 level. std, standard: sig, significance.
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Table B.7. Seasonal variations for the removal of E. histolytica in CAS

Mean 95% Confidence Interval

Difference Lower Upper

(I) seasons (I-7) Std. Error Sig. Bound Bound
Autumn Spring 8.7017 69.17482 0.999 -212.8204 230.2238
Summer 97.8300 69.17482 0.525 -123.6921 319.3521
Winter 41.0163 69.17482 0.931 -180.5058 262.5384
Spring Autumn -8.7017 69.17482 0.999 -230.2238 212.8204
Summer 89.1283 69.17482 0.594 -132.3938 310.6504
Winter 32.3147 69.17482 0.964 -189.2074 253.8368
Summer Autumn -97.8300 69.17482 0.525 -319.3521 123.6921
Spring -89.1283 69.17482 0.594 -310.6504 132.3938
Winter -56.8137 69.17482 0.843 -278.3358 164.7084
Winter Autumn -41.0163 69.17482 0.931 -262.5384 180.5058
Spring -32.3147 69.17482 0.964 -253.8368 189.2074
Summer 56.8137 69.17482 0.843 -164.7084 278.3358

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error termn 1s Mean Square (Error) = 7177.733. Highlights show significant difference at the
0.05 level. std, standard; sig, significance.
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Table B.8. Seasonal variations for the removal of E. histolytica in CAS Sludge

Mean 95% Confidence Interval
(I Difference

seasons (I-1) Std. Error Sig.  Lower Bound Upper Bound

Autumn  Spring 109.8303 90.99868 0.640 -181.5795 401.2401
Summer 13.3150 90.99868 0.999 -278.0948 304.7248
Winter 926.5410% 90.99868 0.000 635.1312 1217.9508

Spring Autumn -109.8303 90.99868 0.640 -401.2401 181.5795
Summer -96.5153 90.99868 0.721 -387.9251 194.8945
Winter 816.7107* 90.99868 0.000 525.3009 1108.1205

Summer  Autumn -13.3150 90.99868 0.999 -304.7248 278.0948
Spring 96.5153 90.99868 0.721 -194.8945 387.9251
Winter 913.2260% 90.99868 0.000 621.8162 1204.6358

Winter Autumn -926.5410% 90.99868 0.000 -1217.9508 -635.1312
Spring -816.7107* 90.99868 0.000 -1108.1205 -525.3009
Summer  -913.2260%* 90.99868 0.000 -1204.6358 -621.8162

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term 1s Mean Square (Error) = 12421.139. Highlights show significant difference at the
0.05 level. std, standard: sig, significance.
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Table B.9. Seasonal variations for the removal of E. histolytica in BNR

Mean 95% Confidence Interval

Difference Lower Upper

(I) seasons (I-T) Std. Error Sig. Bound Bound
Autumn Spring -47.6777% 8.14016 0.002 -73.7453 -21.6100
Summer -47.8613%* 8.14016 0.002 -73.9290 -21.7937

Winter -13.7033 8.14016 0.391 -39.7710 12.3643

Spring Autumn 47.6777% 8.14016 0.002 21.6100 73.7453
Summer -0.1837 8.14016 1.000 -26.2513 25.8840
Winter 33.9743% 8.14016 0.013 7.9067 60.0420
Summer Autumn 47.8613* 8.14016 0.002 21.7937 73.9290
Spring 0.1837 8.14016 1.000 -25.8840 26.2513
Winter 34.1580%* 8.14016 0.013 8.0903 60.2257
Winter Autumn 13.7033 8.14016 0.391 -12.3643 39.7710
Spring -33.9743% 8.14016 0.013 -60.0420 -7.9067

Summer -34.1580%* 8.14016 0.013 -60.2257 -8.0903

Multiple comparisons, dependent variable: removal rate. Tukey honest significant difference.
Based on observed means. The error term 1s Mean Square (Error) = 99.393. Highlights show significant difference at the
0.05 level. std, standard: sig, significance.
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Table B.10. Seasonal variations for the removal of E. histolytica in SBR

Mean 95% Confidence Interval

Difference Lower Upper

(I) seasons (I-J) Std. Error Sig. Bound Bound
Autumn Spring -19.7513 14.76630 0.567 -67.0382 27.5356
Summer -19.1510 14.76630 0.589 -66.4379 28.1359

Winter 12.0820 14.76630 0.844 -35.2049 59.3689

Spring Autumn 19.7513 14.76630 0.567 -27.5356 67.0382
Summer 0.6003 14.76630 1.000 -46.6866 47.8872

Winter 31.8333 14.76630 0.215 -15.4536 79.1202

Summer Autumn 19.1510 14.76630 0.589 -28.1359 66.4379
Spring -0.6003 14.76630 1.000 -47.8872 46.6866

Winter 31.2330 14.76630 0.227 -16.0539 78.5199

Winter Autumn -12.0820 14.76630 0.844 -59.3689 35.2049
Spring -31.8333 14.76630 0.215 -79.1202 15.4536

Summer -31.2330 14.76630 0.227 -78.5199 16.0539

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 327.065. Highlights show significant difference at the
0.05 level. std, standard: sig, significance.
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Table B.11. Seasonal variations for the removal of E. histolytica in CoFIUV

Mean 95% Confidence Interval

Difference Lower Upper

(I) seasons (I-1) Std. Error Sig. Bound Bound
Autumn Spring -8.2963 3.29681 0.131 -18.8539 22612
Summer -8.9203 3.29681 0.101 -19.4779 1.6372

Winter -8.4653 3.29681 0.122 -19.0229 2.0922

Spring Autumn 8.2963 3.29681 0.131 -2.2612 18.8539
Summer -0.6240 3.29681 0.997 -11.1815 9.9335

Winter -0.1690 3.29681 1.000 -10.7265 10.3885

Summer Autumn 8.9203 3.29681 0.101 -1.6372 19.4779
Spring 0.6240 3.29681 0.997 -9.9335 11.1815

Winter 0.4550 3.29681 0.999 -10.1025 11.0125

Winter Autumn 8.4653 3.29681 0.122 -2.0922 19.0229
Spring 0.1650 3.29681 1.000 -10.3885 10.7265

Summer -0.4550 3.29681 0.999 -11.0125 10.1025

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 16.303. Highlights show significant difference at the
0.05 level. std, standard; sig, significance.
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Table B.12. Seasonal variations for the removal of E. histolytica in MBR

Mean 95% Confidence Interval

Difference Lower Upper

(I) seasons (I-1) Std. Error Sig. Bound Bound
Autumn Spring -19.1397* 4.04661 0.006 -32.0983 -6.1810
Summer -39.7857* 4.04661 0.000 -52.7443 -26.8270
Winter -30.0193* 4.04661 0.000 -42.9780 -17.0607

Spring Autumn 19.1397* 4.04661 0.006 6.1810 32.0983
Summer -20.6460* 4.04661 0.004 -33.6047 -7.6873

Winter -10.8797 4.04661 0.103 -23.8383 2.0790

Summer Autumn 39.7857* 4.04661 0.000 26.8270 52.7443
Spring 20.6460* 4.04661 0.004 7.6873 33.6047

Winter 9.7663 4.04661 0.152 -3.1923 22.7250

Winter Autumn 30.0193* 4.04661 0.000 17.0607 42.9780
Spring 10.8797 4.04661 0.103 -2.0790 23.8383

Summer -9.7663 4.04661 0.152 -22.7250 3.1923

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 24.563. Highlights show significant difference at the
0.05 level. std, standard; sig, significance.
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Table B.13. Seasonal variations for the removal of B. hominis in CAS

Mean 95% Confidence Interval

Difference Lower Upper

(I) seasons (I-T) Std. Error Sig. Bound Bound
Autumn Spring -0.7060 0.71069 0.757 -2.9819 1.5699
Summer -0.6530 0.71069 0.796 -2.9289 1.6229

Winter 1.4043 0.71069 0.272 -0.8715 3.6802

Spring Autumn 0.7060 0.71069 0.757 -1.5699 2.9819
Summer 0.0530 0.71069 1.000 -2.2229 2.3289

Winter 2.1103 0.71069 0.069 -0.1655 4.3862

Summer Autumn 0.6530 0.71069 0.796 -1.6229 2.9289
Spring -0.0530 0.71069 1.000 -2.3289 2.2229

Winter 2.0573 0.71069 0.077 -0.2185 4.3332

Winter Autumn -1.4043 0.71069 0.272 -3.6802 0.8715
Spring -2.1103 0.71069 0.069 -4.3862 0.1655

Summer -2.0573 0.71069 0.077 -4.3332 0.2185

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term 1s Mean Square (Error) = 0.758. Highlights show significant difference at the 0.05
level. std, standard: sig, significance.
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Table B.14. Seasonal variations for the removal of B. hominis in CAS Sludge

Mean 95% Confidence Interval
(D Difference

seasons (I-)) Std. Error Sig.  Lower Bound  Upper Bound

Autumn  Spring -5.9510 30536.02582  1.000  -97793.0545 97781.1525
Summer 146.5477 30536.02582  1.000  -97640.5558 97933.6512
Winter 44396.8013  30536.02582  0.504  -53390.3022 142183.9048

Spring  Autumn 5.9510 30536.02582  1.000  -97781.1525 97793.0545
Summer 152.4987 30536.02582  1.000  -97634.6048 97939.6022
Winter 44402.7523  30536.02582  0.504  -53384.3512 142189.8558

Summer Autumn  -146.5477 30536.02582  1.000  -97933.6512 97640.5558
Spring -152.4987 30536.02582  1.000  -97939.6022 97634.6048
Winter 44250.2537  30536.02582  0.507  -53536.8498 142037.3572

Winter  Autumn = -44396.8013  30536.02582  0.504 -142183.9048  53390.3022
Spring -44402.7523  30536.02582  0.504 -142189.8558  53384.3512
Summer -44250.2537  30536.02582  0.507  -142037.3572  53536.8498

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 1398693309.011. Highlights show significant difference
at the 0.05 level. std, standard; sig, significance.
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Table B.15. Seasonal variations for the removal of B. hominis in BNR

Mean 95% Confidence Interval

Difference Lower Upper

(I) seasons (I-1) Std. Error Sig. Bound Bound
Autumn Spring -9.1747 15.97728 0.937 -60.3395 41.9902
Summer -8.7197 15.97728 0.945 -59.8845 42.4452

Winter 14.9397 1597728 0.788 -36.2252 66.1045

Spring Autumn 9.1747 15.97728 0.937 -41.9902 60.3395
Summer 0.4550 15.97728 1.000 -50.7099 51.6199

Winter 24.1143 1597728 0.475 -27.0505 75.2792

Summer Autumn 8.7197 15.97728 0.945 -42.4452 59.8845
Spring -0.4550 15.97728 1.000 -51.6199 50.7099

Winter 23.6593 15.97728 0.490 -27.5055 74.8242

Winter Autumn -14.9397 15.97728 0.788 -66.1045 36.2252
Spring -24.1143 15.97728 0.475 -75.2792 27.0505

Summer -23.6393 15.97728 0.490 -74.8242 27.5055

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 382.910. Highlights show significant difference at the
0.05 level. std, standard: sig, significance.
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Table B.16. Seasonal variations for the removal of B. hominis in SBR

Mean 95% Confidence Interval
Difference Lower Upper
(I) seasons (I-0) Std. Error Sig. Bound Bound
Autumn Spring -17.9417 16.89631 0.720 -72.0496 36.1663
Summer -33.8893 16.89631 0.262 -87.9973 20.2186
Winter 32.7580 16.89631 0.286 -21.3499 86.8659
Spring Autumn 17.9417 16.89631 0.720 -36.1663 72.0496
Summer -15.9477 16.89631 0.783 -70.0556 38.1603
Winter 50.6997 16.89631 0.066 -3.4083 104.8076
Summer Autumn 33.8893 16.89631 0.262 -20.2186 87.9973
Spring 15.9477 16.89631 0.783 -38.1603 70.0556
Winter 66.6473% 16.89631 0.018 12.5394 120.7553
Winter Autumn -32.7580 16.89631 0.286 -86.8659 21.3499
Spring -50.6997 16.89631 0.066 -104.8076 3.4083
Summer -66.6473% 16.89631 0.018 -120.7553 -12.5394

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 428.228. Highlights show significant difference at the
0.05 level. std, standard; sig, significance.
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Table B.17. Seasonal variations for the removal of B. hominis in CoFIUV

Mean 95% Confidence Interval

Difference Lower Upper

(I) seasons (I-T) Std. Error Sig. Bound Bound
Autumn Spring -23.5377 15.75109 0.483 -73.9782 26.9029
Summer -39.0200 15.75109 0.139 -89.4605 11.4205

Winter -32.6367 15.75109 0.240 -83.0772 17.8039

Spring Autumn 23.5377 15.75109 0.483 -26.9029 73.9782
Summer -15.4823 15.75109 0.763 -65.9229 34.9582

Winter -9.0990 15.75109 0.936 -59.5395 41.3415

Summer Autumn 39.0200 15.75109 0.139 -11.4205 89.4605
Spring 15.4823 15.75109 0.763 -34.9582 65.9229
Winter 6.3833 15.75109 0.976 -44.0572 56.8239
Winter Autumn 32.6367 15.75109 0.240 -17.8039 83.0772
Spring 9.0990 15.75109 0.936 -41.3415 59.5395
Summer -6.3833 15.75109 0.976 -56.8239 44,0572

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 372.145. Highlights show significant difference at the
0.05 level. std, standard: sig, significance.
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Table B.18. Seasonal variations for the removal of B. hominis in MBR

Mean 95% Confidence Interval

Difference Lower Upper

(T) seasons (I-1) Std. Error Sig. Bound Bound
Autumn Spring .0027* 0.00041 0.001 0.0014 0.0040
Summer -0.0007 0.00041 0414 -0.0020 0.0006

Winter -0.0003 0.00041 0.845 -0.0016 0.0010

Spring Autumn -.0027* 0.00041 0.001 -0.0040 -0.0014
Summer -.0033* 0.00041 0.000 -0.0046 -0.0020

Winter -.0030* 0.00041 0.000 -0.0043 -0.0017

Summer Autumn 0.0007 0.00041 0.414 -0.0006 0.0020
Spring .0033* 0.00041 0.000 0.0020 0.0046

Winter 0.0003 0.00041 0.845 -0.0010 0.0016

Winter Autumn 0.0003 0.00041 0.845 -0.0010 0.0016
Spring .0030* 0.00041 0.000 0.0017 0.0043

Summer -0.0003 0.00041 0.845 -0.0016 0.0010

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 2.5x10-7. Highlights show significant difference at the
0.05 level. std, standard; sig, significance.
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Table B.19. Seasonal variations for the removal of C. parvum in CAS

Mean 95% Confidence Interval

Difference Lower Upper

(I) seasons (I-1) Std. Error Sig. Bound Bound
Autumn Spring 6.9033 8.86125 0.862 -21.4735 35.2802
Summer 65.1383* 8.86125 0.000 36.7615 93.5152

Winter 6.4623 8.86125 0.883 -21.9145 34.8392

Spring Autumn -6.9033 8.86125 0.862 -35.2802 21.4735
Summer 58.2350% 8.86125 0.001 29.8582 86.6118

Winter -0.4410 8.86125 1.000 -28.8178 27.9358
Summer Autumn -65.1383* 8.86125 0.000 -93.5152 -36.7615
Spring -58.2350* 8.86125 0.001 -86.6118 -29.8582
Winter -58.6760* 8.86125 0.001 -87.0528 -30.2992

Winter Autumn -6.4623 8.86125 0.883 -34.8392 21.9145
Spring 0.4410 8.86125 1.000 -27.9358 28.8178

Summer 58.6760%* 8.86125 0.001 30.2992 87.0528

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term 1s Mean Square (Error) = 117.783. Highlights show significant difference at the
0.05 level. std, standard; sig, significance.
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Table B.20. Seasonal variations for the removal of C. parvum in CAS Sludge

Mean 95% Confidence Interval
(I) Difference (I-

seasons )} Std. Error Sig.  Lower Bound Upper Bound

Autumn  Spring -1009.0660 723.46588 0.536 -3325.8584 1307.7264
Summer  -1068.2930 723.46588 0.492 -3385.0854 1248.4994
Winter -854.0987 723.46588 0.655 -3170.8911 1462.6938

Spring  Autumn 1009.0660 723.46588 0.536 -1307.7264 3325.8584
Summer -59.2270 723.46588 1.000 -2376.0194 2257.5654
Winter 154.9673 723.46588 0.996 -2161.8251 2471.7598

Summer Autumn 1068.2930 723.46588 0.492 -1248.4994 3385.0854
Spring 59.2270 723.46588 1.000 -2257.5654 2376.0194
Winter 214.1943 723.46588 0.990 -2102.5981 2530.9868

Winter  Autumn 854.0987 723.46588 0.655 -1462.6938 3170.8911
Spring -154.9673 723.46588 0.996 -2471.7598 2161.8251
Summer  -214.1943 723.46588 0.990 -2530.9868 2102.5981

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 785104.328. Highlights show significant difference at
the 0.05 level. std, standard: sig, significance.
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Table B.21. Seasonal variations for the removal of C. parvum in BNR

Mean 95% Confidence Interval
Difference Lower Upper
(I) seasons (I- Std. Error Sig. Bound Bound
Autumn Spring 5.2037 15.05640 0.985 -43.0122 53.4196
Summer -4.2593 15.05640 0.991 -52.4752 43.9566
Winter 13.0643 15.05640 0.821 -35.1516 61.2802
Spring Autumn -5.2037 15.05640 0.985 -53.4196 43.0122
Summer -9.4630 15.05640 0.920 -57.6789 38.7529
Winter 7.8607 15.05640 0.951 -40.3552 56.0766
Summer Autumn 4.2593 15.05640 0.991 -43.9566 52.4752
Spring 9.4630 15.05640 0.920 -38.7529 57.6789
Winter 17.3237 15.05640 0.671 -30.8922 65.5396
Winter Autumn -13.0643 15.05640 0.821 -61.2802 35.1516
Spring -7.8607 15.05640 0.951 -56.0766 40.3552
Summer -17.3237 15.05640 0.671 -65.5396 30.8922

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 340.043. Highlights show significant difference at the
0.05 level. std, standard: sig, significance.
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Table B.22. Seasonal variations for the removal of C. parvum in SBR

Mean 95% Confidence Interval
Difference Lower Upper
(I) seasons (I-I) Std. Error Sig. Bound Bound
Autumn Spring 1.2430 5.28324 0.995 -15.6758 18.1618
Summer 4.5750 5.28324 0.822 -12.3438 21.4938
Winter -3.9490 5.28324 0.875 -20.8678 12.9698
Spring Autumn -1.2430 5.28324 0.995 -18.1618 15.6758
Summer 3.3320 5.28324 0.919 -13.5868 20.2508
Winter -5.1920 5.28324 0.763 -22.1108 11.7268
Summer Autumn -4.5750 5.28324 0.822 -21.4938 12.3438
Spring -3.3320 5.28324 0.919 -20.2508 13.5868
Winter -8.5240 5.28324 0.423 -25.4428 8.3948
Winter Autumn 3.9490 5.28324 0.875 -12.9698 20.8678
Spring 5.1920 5.28324 0.763 -11.7268 22,1108
Summer 8.5240 5.28324 0.423 -8.3948 254428

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 41.869. Highlights show significant difference at the
0.05 level. std, standard: sig, significance.
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Table B.23. Seasonal variations for the removal of C. parvum in CoFIUV

Mean 95% Confidence Interval

Difference Lower Upper

(I) seasons (I-1) Std. Error Sig. Bound Bound
Autumn Spring 22.2820 16.32314 0.552 -29.9905 74.5545
Summer -13.9500 16.32314 0.827 -66.2225 38.3225

Winter -14.7243 16.32314 0.804 -66.9968 37.5481

Spring Autumn -22.2820 16.32314 0.552 -74.5545 29.9905
Summer -36.2320 16.32314 0.197 -88.5045 16.0405

Winter -37.0063 16.32314 0.185 -89.2788 15.2661

Summer Autumn 13.9500 16.32314 0.827 -38.3225 66.2225
Spring 36.2320 16.32314 0.197 -16.0405 88.5045

Winter -0.7743 16.32314 1.000 -53.0468 51.4981

Winter Autumn 14.7243 16.32314 0.804 -37.5481 66.9968
Spring 37.0063 16.32314 0.185 -15.2661 89.2788

Summer 0.7743 16.32314 1.000 -51.4981 53.0468

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 399.668. Highlights show significant difference at the
0.05 level. std, standard; sig, significance.
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Table B.24. Seasonal variations for the removal of C. parvum in MBR

Mean 95% Confidence Interval

Difference Lower Upper

(I) seasons (I-1) Std. Error Sig. Bound Bound
Autumn Spring 1.1360 2.28749 0.958 -6.1893 8.4613
Summer 0.3010 2.28749 0.999 -7.0243 7.6263

Winter 3.0307 2.28749 0.574 -4.2947 10.3560

Spring Autumn -1.1360 2.28749 0.958 -8.4613 6.1893
Summer -0.8350 2.28749 0.982 -8.1603 6.4903

Winter 1.8947 2.28749 0.840 -5.4307 9.2200

Summer Autumn -0.3010 2.28749 0.999 -7.6263 7.0243
Spring 0.8350 2.28749 0.982 -6.4903 8.1603

Winter 2.7297 2.28749 0.647 -4.5957 10.0550

Winter Autumn -3.0307 2.28749 0.574 -10.3560 4.2947
Spring -1.8947 2.28749 0.840 -9.2200 5.4307

Summer -2.7297 2.28749 0.647 -10.0550 4.5957

Multiple comparisons, dependent variable: removal rate, Tukey honest significant difference.
Based on observed means. The error term is Mean Square (Error) = 7.849. Highlights show significant difference at the 0.05
level. std, standard: sig, significance.
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